Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Free

Abstract

The catabolic potential for sterol degradation of fast-growing mycobacteria is well known. However, no genes or enzymes responsible for the steroid degradation process have been identified as yet in these species. One of the key enzymes required for degradation of the steroid ring structure is 3-ketosteroid Δ-dehydrogenase (KsdD). The recent annotation of the genome (TIGR database) revealed six KsdD homologues. Targeted disruption of the MSMEG5898 () gene, but not the MSMEG4855 () gene, resulted in partial inactivation of the cholesterol degradation pathway and accumulation of the intermediate 4-androstene-3,17-dione. This effect was reversible by the introduction of the wild-type gene into Δ or overexpression of . The data indicate that KsdD1 is the main KsdD in , but that KsdD2 is able to perform the cholesterol degradation process when overproduced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27953-0
2005-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512393.html?itemId=/content/journal/micro/10.1099/mic.0.27953-0&mimeType=html&fmt=ahah

References

  1. Choi K. P., Molnar I., Murooka Y. 1995; Secretory overproduction of Arthrobacter simplex 3-ketosteroid Δ1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl Microbiol Biotechnol 43:1044–1049 [CrossRef]
    [Google Scholar]
  2. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  3. Dziadek J., Yamashita M., Murooka Y. 1998; Cloning, sequencing and characterisation of a downstream region of ksdDI operon of Arthrobacter simplex . Acta Microbiol Pol 47:345–353
    [Google Scholar]
  4. Dziadek J., Madiraju M. V., Rutherford S. A., Atkinson M. A., Rajagopalan M. 2002; Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology 148:961–971
    [Google Scholar]
  5. Florin C., Kohler T., Grandguillot M., Plesiat P. 1996; Comamonas testosteroni 3-ketosteroid-Δ4(5 α )-dehydrogenase: gene and protein characterization. J Bacteriol 178:3322–3330
    [Google Scholar]
  6. Geize R., Hessels G. I., Vrijbloed J. W., Dijkhuizen L, van Gerwen R., van der Meijden P. 2000; Targeted disruption of the kst D gene encoding 3-ketosteroid Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis SQ1. Appl Environ Microbiol 66:2029–2036 [CrossRef]
    [Google Scholar]
  7. Geize R., Hessels G. I., Dijkhuizen L, van Gerwen R., van der Meijden P. 2001; Unmarked gene deletion mutagenesis of kst D, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sac B as counter-selectable marker. FEMS Microbiol Lett 18:197–202
    [Google Scholar]
  8. Geize R., Hessels G. I., Dijkhuizen L. 2002; Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ(1)-dehydrogenase isoenzyme. Microbiology 148:3285–3292
    [Google Scholar]
  9. Horinouchi M., Yamamoto T., Taguchi K., Arai H., Kudo T. 2001; Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147:3367–3375
    [Google Scholar]
  10. Horinouchi M., Hayashi T., Koshino H., Yamamoto T., Kudo T. 2003a; Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni . Appl Environ Microbiol 69:2139–2152 [CrossRef]
    [Google Scholar]
  11. Horinouchi M., Hayashi T., Yamamoto T., Kudo T. 2003b; A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69:4421–4430 [CrossRef]
    [Google Scholar]
  12. Itagaki E., Wakabayashi T., Hatta T. 1990; Purification and characterization of 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina . Biochim Biophys Acta 1038:60–67 [CrossRef]
    [Google Scholar]
  13. Kaufmann G., Thole H., Kraft R., Atrat P. 1992; Steroid-1-dehydrogenase of Rhodococcus erythropolis : purification and N-terminal amino acid sequence. Steroid Biochem Mol Biol 43:297–301 [CrossRef]
    [Google Scholar]
  14. Madiraju M. V., Qin M. H., Rajagopalan M. 2000; Development of simple and efficient protocol for isolation of plasmids from mycobacteria using zirconia beads. Lett Appl Microbiol 30:38–41 [CrossRef]
    [Google Scholar]
  15. Mahato S. B., Garai S. 1997; Advances in microbial steroid biotransformation. Steroids 62:332–345 [CrossRef]
    [Google Scholar]
  16. Martin C. K. 1977; Microbial cleavage of sterol side chains. Adv Appl Microbiol 22:29–58
    [Google Scholar]
  17. Molnar I., Choi K. P., Murooka Y. 1995; Molecular cloning, expression in Streptomyces lividans , and nucleotide sequence analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid- 5-isomerase, and a hypothetic regulatory protein. Mol Microbiol 15:895–905 [CrossRef]
    [Google Scholar]
  18. Morii S., Fujii C., Miyoshi T., Iwami M., Itagaki E. 1998; 3-Ketosteroid-Δ1-dehydrogenase of Rhodococcus rhodochrous : sequencing of the genomic DNA and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem 124:1026–1032 [CrossRef]
    [Google Scholar]
  19. Parish T., Stoker N. G. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975
    [Google Scholar]
  20. Plesiat P., Grandguillot M., Harayama S., Vragar S., Michel-Briand Y. 1991; Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid Δ1-dehydrogenase. J Bacteriol 173:7219–7227
    [Google Scholar]
  21. Rumijowska A., Lisowska K., Ziółkowski A., Sedlaczek L. 1997; Transformation of sterols by Mycobacterium vaccae : effect of lecithin on the permeability of cell envelopes to sterols. World J Microbiol Biotechnol 13:89–95 [CrossRef]
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sedlaczek L. 1988; Biotransformation of steroids. Crit Rev Biotechnol 7:187–236 [CrossRef]
    [Google Scholar]
  24. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  25. Szentirmai A. 1990; Microbial physiology of side chain degradation of sterols. J Ind Microbiol 6:101–115 [CrossRef]
    [Google Scholar]
  26. Triccas J. A., Parish T., Britton W. J., Gicquel B. 1998; An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis . FEMS Microbiol Lett 15:151–156
    [Google Scholar]
  27. Wilmanska D., Dziadek J., Sajduda A., Milczarek K., Jaworski A., Murooka Y. 1995; Identification of cholesterol oxidase from fast-growing mycobacterial strains and Rhodococcus sp. J Ferment Bioeng 79:119–124 [CrossRef]
    [Google Scholar]
  28. Wovcha M. G., Brooks K. E., Kominek L. A. 1979; Evidence for two steroid 1,2-dehydrogenase activities in Mycobacterium fortuitum . Biochim Biophys Acta 574:471–479 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27953-0
Loading
/content/journal/micro/10.1099/mic.0.27953-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed