1887

Abstract

Caco-2 cells are models of absorptive enterocytes. The net transport of fluid from apical to basolateral surfaces results in ‘domes' forming in differentiated monolayers. Here, the effect of on this process has been examined. caused no changes in short-circuit current upon infection of Caco-2 cell monolayers in Ussing chambers. Thus, no active secretory events could be demonstrated using this model. It was therefore hypothesized that could inhibit the absorptive function of enterocytes and that this may contribute to diarrhoeal disease. infection of fluid-transporting (‘doming’) Caco-2 cells resulted in a significant reduction in dome number, which correlated with a decrease in tight junction integrity in infected monolayers, when measured as transepithelial electrical resistance. Defined mutants of also reduced dome numbers in infected monolayers. also altered the distribution of the tight junction protein occludin within cell monolayers. The addition to monolayers of extracellular gentamicin prevented these changes, indicating the contribution of extracellular bacteria to this process. Thus, tight junction integrity is required for fluid transport in Caco-2 cell monolayers as leaky tight junctions cannot maintain support of transported fluid at the basolateral surface of infected cell monolayers. Inhibition of absorptive cell function, changes in epithelial resistance and rearrangement of tight junctional proteins such as occludin represent a potential diarrhoeal mechanism of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27950-0
2005-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512451.html?itemId=/content/journal/micro/10.1099/mic.0.27950-0&mimeType=html&fmt=ahah

References

  1. Bacon, D. J., Szymanski, C. M., Burr, D. H., Silver, R. P., Alm, R. A. & Guerry, P. ( 2001; ). A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol Microbiol 40, 769–777.[CrossRef]
    [Google Scholar]
  2. Berkes, J., Viswanathan, V. K., Savkovic, S. D. & Hecht, G. ( 2003; ). Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52, 439–51.[CrossRef]
    [Google Scholar]
  3. Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P. & Blaser, M. J. ( 1988; ). Experimental Campylobacter jejuni infection in humans. J Infect Dis 157, 472–479.[CrossRef]
    [Google Scholar]
  4. Bras, A. M. & Ketley, J. M. ( 1999; ). Transcellular translocation of Campylobacter jejuni across human polarised epithelial cell monolayers. FEMS Microbiol Lett 179, 209–215.[CrossRef]
    [Google Scholar]
  5. Canil, C., Rosenshine, I., Ruschkowski, S., Donnenberg, M. S., Kaper, J. B. & Finlay, B. B. ( 1993; ). Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect Immun 61, 2755–2762.
    [Google Scholar]
  6. Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O. & Obi, C. L. ( 2002; ). Human Campylobacteriosis in developing countries. Emerg Infect Dis 8, 237–243.[CrossRef]
    [Google Scholar]
  7. Delie, F. & Rubas, W. ( 1997; ). A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14, 221–286.
    [Google Scholar]
  8. Dolby, J. M. & Newell, D. G. ( 1986; ). The protection of infant mice from colonization with Campylobacter jejuni by vaccination of the dams. J Hyg 96, 143–151.[CrossRef]
    [Google Scholar]
  9. Everest, P. H., Goossens, H., Butzler, J. P., Lloyd, D., Knutton, S., Ketley, J. M. & Williams, P. H. ( 1992; ). Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and Campylobacter coli. J Med Microbiol 37, 319–325.[CrossRef]
    [Google Scholar]
  10. Everest, P. H., Goossens, H., Sibbons, P., Lloyd, D. R., Knutton, S., Leece, R., Ketley, J. M. & Williams, P. H. ( 1993; ). Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J Med Microbiol 38, 316–321.[CrossRef]
    [Google Scholar]
  11. Hardy, S. P., Denmead, M., Parekh, N. & Granum, P. E. ( 1999; ). Cationic currents induced by Clostridium perfringens type A enterotoxin in human intestinal Caco-2 cells. J Med Microbiol 48, 235–243.[CrossRef]
    [Google Scholar]
  12. Harvey, P., Battle, T. & Leach, S. ( 1999; ). Different invasion phenotypes of Campylobacter isolates in Caco-2 cell monolayers. J Med Microbiol 48, 461–469.[CrossRef]
    [Google Scholar]
  13. Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H. & Simmons, N. L. ( 1995; ). Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect Immun 63, 356–359.
    [Google Scholar]
  14. Karlyshev, A. V., Linton, D., Gregson, N. A., Lastovica, A. J. & Wren, B. W. ( 2000; ). Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35, 529–541.
    [Google Scholar]
  15. Karlyshev, A. V., Everest, P., Linton, D., Cawthraw, S., Newell, D. G. & Wren, B. W. ( 2004; ). The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150, 1957–1964.[CrossRef]
    [Google Scholar]
  16. Konkel, M. E., Mead, D. J., Hayes, S. F. & Cieplak, W. Jr ( 1992; ). Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures. J Infect Dis 166, 308–315.[CrossRef]
    [Google Scholar]
  17. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999a; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  18. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999b; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  19. Konkel, M. E., Monteville, M. R., Rivera-Amill, V. & Joens, L. A. ( 2001; ). The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr Issues Intest Microbiol 2, 55–71.
    [Google Scholar]
  20. Larsen, J. C., Szymanski, C. & Guerry, P. ( 2004; ). N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J Bacteriol 186, 6508–6514.[CrossRef]
    [Google Scholar]
  21. Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D. & Wren, B. W. ( 2002; ). Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43, 497–508.[CrossRef]
    [Google Scholar]
  22. Martino, M. C., Stabler, R. A., Zhang, Z. W., Farthing, M. J., Wren, B. W. & Dorrell, N. ( 2001; ). Helicobacter pylori pore-forming cytolysin orthologue TlyA possesses in vitro hemolytic activity and has a role in colonization of the gastric mucosa. Infect Immun 69, 1697–1703.[CrossRef]
    [Google Scholar]
  23. Newell, D. G., McBride, H. & Dolby, J. M. ( 1985; ). Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J Hyg 95, 217–227.[CrossRef]
    [Google Scholar]
  24. Parkhill, J., Wren, B. W., Mungall, K. & 18 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  25. Pei, Z. H., Ellison, R. T. III & Blaser, M. J. ( 1991; ). Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J Biol Chem 266, 16363–16369.
    [Google Scholar]
  26. Russell, R. G., O'Donnoghue, M., Blake, D. C. Jr, Zulty, J. & DeTolla, L. J. ( 1993; ). Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J Infect Dis 168, 210–215.[CrossRef]
    [Google Scholar]
  27. Sheppard, D. N., Rich, D. P., Ostegaard, L. S., Gregory, R. J., Smith, A. E. & Welsh, M. J. ( 1993; ). Mutations in CFTR associated with mild disease form Cl channels with altered pore properties. Nature 362, 160–164.[CrossRef]
    [Google Scholar]
  28. Simonovic, I., Rosenberg, J., Koutsouris, A. & Hecht, G. ( 2000; ). Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2, 305–315.[CrossRef]
    [Google Scholar]
  29. Skirrow, M. & Blaser, M. ( 2000; ). Clinical aspects of Campylobacter infection. In Campylobacter, pp. 68–88. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  30. Wassenaar, T. M. & Blaser, M. J. ( 1999; ). Pathophysiology of Campylobacter jejuni infections of humans. Microbes Infect 1, 1023–1033.[CrossRef]
    [Google Scholar]
  31. Zhang, Z. W., Dorrell, N., Wren, B. W. & Farthingt, M. J. ( 2002; ). Helicobacter pylori adherence to gastric epithelial cells: a role for non-adhesin virulence genes. J Med Microbiol 51, 495–502.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27950-0
Loading
/content/journal/micro/10.1099/mic.0.27950-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error