Oxidative protein damage causes chromium toxicity in yeast Free

Abstract

Oxidative damage in microbial cells occurs during exposure to the toxic metal chromium, but it is not certain whether such oxidation accounts for the toxicity of Cr. Here, a Δ mutant (defective for the Cu,Zn-superoxide dismutase) was found to be hypersensitive to Cr(VI) toxicity under aerobic conditions, but this phenotype was suppressed under anaerobic conditions. Studies with cells expressing a Sod1p variant (Sod1) showed that the superoxide dismutase activity rather than the metal-binding function of Sod1p was required for Cr resistance. To help identify the macromolecular target(s) of Cr-dependent oxidative damage, cells deficient for the reduction of phospholipid hydroperoxides (Δ and Δ/Δ/Δ) and for the repair of DNA oxidation (Δ and Δ/Δ) were tested, but were found not to be Cr-sensitive. In contrast, Δ (Δ) and Δ (Δ) mutants defective for peptide methionine sulfoxide reductase (MSR) activity exhibited a Cr sensitivity phenotype, and cells overexpressing these enzymes were Cr-resistant. Overexpression of MSRs also suppressed the Cr sensitivity of Δ cells. The inference that protein oxidation is a primary mechanism of Cr toxicity was corroborated by an observed ∼20-fold increase in the cellular levels of protein carbonyls within 30 min of Cr exposure. Carbonylation was not distributed evenly among the expressed proteins of the cells; certain glycolytic enzymes and heat-shock proteins were specifically targeted by Cr-dependent oxidative damage. This study establishes an oxidative mode of Cr toxicity in , which primarily involves oxidative damage to cellular proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27945-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511939.html?itemId=/content/journal/micro/10.1099/mic.0.27945-0&mimeType=html&fmt=ahah

References

  1. Ackerley D. F., Gonzalez C. F., Keyhan M., Blake R., Matin A. 2004; Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860 [CrossRef]
    [Google Scholar]
  2. Aiyar J., Berkovits H. J., Floyd R. A., Wetterhahn K. E. 1991; Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ Health Perspect 92:53–62 [CrossRef]
    [Google Scholar]
  3. Ausubel F., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 2004 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Avery A. M., Avery S. V. 2001; Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735 [CrossRef]
    [Google Scholar]
  5. Avery A. M., Willetts S. A., Avery S. V. 2004; Genetic dissection of the phospholipid hydroperoxidase activity of yeast Gpx3 reveals its functional importance. J Biol Chem 279:46652–46658 [CrossRef]
    [Google Scholar]
  6. Avery S. V. 2001; Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142
    [Google Scholar]
  7. Avery S. V., Howlett N. G., Radice S. 1996; Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma-membrane fatty acid composition. Appl Environ Microbiol 62:3960–3966
    [Google Scholar]
  8. Cabiscol E., Piulats E., Echave P., Herrero E., Ros J. 2000; Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398
    [Google Scholar]
  9. Cervantes C., Campos-Garcia J., Devars S., Gutierrez-Corona F., Loza-Tavera H., Torres-Guzman J. C., Moreno-Sanchez R. 2001; Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347 [CrossRef]
    [Google Scholar]
  10. Cheng L., Liu S. J., Dixon K. 1998; Analysis of repair and mutagenesis of chromium-induced DNA damage in yeast, mammalian cells, and transgenic yeast. Environ Health Perspect Suppl 4 106:1027–1032 [CrossRef]
    [Google Scholar]
  11. Ciriolo M. R., Civitareale P., Carri M. T., Demartino A., Galiazzo F., Rotilio G. 1994; Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver. J Biol Chem 269:25783–25787
    [Google Scholar]
  12. Costa W. M. V., Amorim M. A., Quintanilha A., Moradas-Ferreira P. 2002; Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Rad Biol Med 33:1507–1515 [CrossRef]
    [Google Scholar]
  13. Culotta V. C., Joh H. D., Lin S. J., Slekar K. H., Strain J. 1995; A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270:29991–29997 [CrossRef]
    [Google Scholar]
  14. Dayan A. D., Paine A. J. 2001; Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Human Exp Toxicol 20:439–451 [CrossRef]
    [Google Scholar]
  15. Delaunay A., Pflieger D., Barrault M. B., Vinh J., Toledano M. B. 2002; A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481 [CrossRef]
    [Google Scholar]
  16. Feng W. Y., Li B., Liu J., Chai Z. F., Zhang P. Q., Gao Y. X., Zhao J. J. 2003; Study of chromium-containing proteins in subcellular fractions of rat liver by enriched stable isotopic tracer technique and gel filtration chromatography. Anal Bioanal Chem 375:363–368
    [Google Scholar]
  17. Fernandes M. A. S., Santos M. S., Alpoim M. C., Madeira V. M. C., Vicente J. A. F. 2002; Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. J Biochem Mol Toxicol 16:53–63 [CrossRef]
    [Google Scholar]
  18. Gadd G. M. 1992; Metals and microorganisms – a problem of definition. FEMS Microbiol Lett 100:197–203 [CrossRef]
    [Google Scholar]
  19. Gietz R. D., Woods R. A. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96
    [Google Scholar]
  20. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot R., Boucherie H., Toledano M. B., Labarre J. 1998; The H2O2 stimulon inSaccharomyces cerevisiae . J Biol Chem 273:22480–22489 [CrossRef]
    [Google Scholar]
  21. Grune T., Reinheckel T., Davies K. J. A. 1997; Degradation of oxidized proteins in mammalian cells. Faseb J 11:526–534
    [Google Scholar]
  22. Halliwell B., Gutteridge J. M. C. 1999 Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press;
    [Google Scholar]
  23. Haracska L., Yu S. L., Johnson R. E., Prakash L., Prakash S. 2000; Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase ε. Nat Genet 25:458–461 [CrossRef]
    [Google Scholar]
  24. Henderson G. 1989; A comparison of the effects of chromate, molybdate and cadmium oxide on respiration in the yeast Saccharomyces cerevisiae. Biol Met 2:83–88 [CrossRef]
    [Google Scholar]
  25. Hodges N. J., Chipman J. K. 2002; Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells. Carcinogenesis 23:55–60 [CrossRef]
    [Google Scholar]
  26. Howlett N. G., Avery S. V. 1997; Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976
    [Google Scholar]
  27. Jamieson D. J. 1998; Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527 [CrossRef]
    [Google Scholar]
  28. Kasprzak K. S. 2002; Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Rad Biol Med 32:958–967 [CrossRef]
    [Google Scholar]
  29. Kim Y. H., Berry A. H., Spencer D. S., Stites W. E. 2001; Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Prot Eng 14:343–347 [CrossRef]
    [Google Scholar]
  30. Koc A., Gasch A. P., Rutherford J. C., Kim H. Y., Gladyshev V. N. 2004; Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101:7999–8004 [CrossRef]
    [Google Scholar]
  31. Kryukov G. V., Kumar R. A., Koc A., Sun Z. H., Gladyshev V. N. 2002; Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:4245–4250 [CrossRef]
    [Google Scholar]
  32. Levine R. L., Moskovitz J., Stadtman E. R. 2000; Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301–307 [CrossRef]
    [Google Scholar]
  33. Lu Y., Roe J. A., Bender C. J., Peisach J., Banci L., Bertini I., Gralla E. B., Valentine J. S. 1996; New type 2 copper-cysteinate proteins. Copper site histidine-to-cysteine mutants of yeast copper-zinc superoxide dismutase. Inorg Chem 35:1692–1700 [CrossRef]
    [Google Scholar]
  34. Luo H., Lu Y., Shi X., Mao Y., Delal N. S. 1996; Chromium (IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 26:185–191
    [Google Scholar]
  35. Moradas-Ferreira P., Costa V., Piper P., Mager W. 1996; The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19:651–658 [CrossRef]
    [Google Scholar]
  36. Nguyen-Nhu N. T., Knoops B. 2002; Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol Lett 135:219–228 [CrossRef]
    [Google Scholar]
  37. Nishida C. R., Gralla E. B., Valentine J. S. 1994; Characterization of three yeast copper-zinc superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 91:9906–9910 [CrossRef]
    [Google Scholar]
  38. O'Brien T., Xu J., Patierno S. R. 2001; Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest. Mol Cell Biochem 222:173–182 [CrossRef]
    [Google Scholar]
  39. O'Brien T. J., Fornsaglio J. L., Ceryak S., Patierno S. R. 2002; Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae . DNA Repair 1:617–627 [CrossRef]
    [Google Scholar]
  40. Pesti M., Gazdag Z., Emri T., Farkas N., Koosz Z., Belagy J., Pocsi I. 2002; Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction. J Basic Microbiol 42:408–419 [CrossRef]
    [Google Scholar]
  41. Pourahmad J., O'Brien P. J. 2001; Biological reactive intermediates that mediate chromium (VI) toxicity. Biol React Intermed VI Adv Exp Med Biol 500:203–207
    [Google Scholar]
  42. Ravichandran V., Seres T., Moriguchi T., Thomas J. A., Johnston R. B. 1994; S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015
    [Google Scholar]
  43. Requena J. R., Chao C. C., Levine R. L., Stadtman E. R. 2001; Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 98:69–74 [CrossRef]
    [Google Scholar]
  44. Reynolds M., Peterson E., Quievryn G., Zhitkovich A. 2004; Human nucleotide excision repair efficiently removes chromium-DNA phosphate adducts and protects cells against chromate toxicity. J Biol Chem 279:30419–30424 [CrossRef]
    [Google Scholar]
  45. Shanmuganathan A., Avery S. V., Willetts S. A., Houghton J. E. 2004; Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett 556:253–259 [CrossRef]
    [Google Scholar]
  46. Shenton D., Grant C. M. 2003; Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519 [CrossRef]
    [Google Scholar]
  47. Shrivastava H. Y., Nair B. U. 2000; Protein degradation by peroxide catalyzed by chromium (III): role of coordinated ligand. Biochem Biophys Res Commun 270:749–754 [CrossRef]
    [Google Scholar]
  48. Shrivastava H. Y., Nair B. U. 2004; Fluorescence resonance energy transfer from tryptophan to a chromium(III) complex accompanied by non-specific cleavage of albumin: a step forward towards the development of a novel photoprotease. J Inorg Biochem 98:991–994 [CrossRef]
    [Google Scholar]
  49. Sumner E. R., Avery A. M., Houghton J. E., Robins R. A., Avery S. V. 2003; Cell cycle- and age-dependent activation of Sod1p drives the formation of stress-resistant cell subpopulations within clonal yeast cultures. Mol Microbiol 50:857–870 [CrossRef]
    [Google Scholar]
  50. Swanson R. L., Morey N. J., Doetsch P. W., Jinks-Robertson S. 1999; Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929–2935
    [Google Scholar]
  51. Wei J. P. J., Srinivasan C., Han H., Valentine J. S., Gralla E. B. 2001; Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. J Biol Chem 276:44798–44803 [CrossRef]
    [Google Scholar]
  52. White C., Sharman A. K., Gadd G. M. 1998; An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575 [CrossRef]
    [Google Scholar]
  53. Willetts S. A. 2004 Genetic and genomic approaches to understanding metal toxicity in Saccharomyces cerevisiae PhD thesis University of Nottingham;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27945-0
Loading
/content/journal/micro/10.1099/mic.0.27945-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed