1887

Abstract

Double-stranded DNA phages of both Gram-positive and Gram-negative bacteria typically use a holin–endolysin system to achieve lysis of their host. In this study, the lysis genes of phage P68 were characterized. P68 gene was shown to encode a cell-wall-degrading enzyme, which causes cell lysis when externally added to clinical isolates of . Another gene, , was identified embedded in the −1 reading frame at the 3′ end of . The deduced Hol15 protein has three putative transmembrane domains, and thus resembles class I holins. An additional candidate holin gene, , was found downstream of the endolysin gene based on two predicted transmembrane domains of the encoded protein, which is a typical trait of class II holins. The synthesis of either Hol12 or Hol15 resulted in growth retardation of , and both and were able to complement a phage am mutation. The gene has a dual start motif beginning with the codons Met1-Lys2-Met3…. Evidence is presented that the gene encodes a lysis inhibitor (anti-holin) and a lysis effector (actual holin). As depolarization of the membrane converted the anti-holin to a functional holin, these studies suggested that functions as a typical dual start motif class I holin. The unusual arrangement of the P68 lysis genes is discussed.

Keyword(s): DNP, dinitrophenol
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27937-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512331.html?itemId=/content/journal/micro/10.1099/mic.0.27937-0&mimeType=html&fmt=ahah

References

  1. Alonso J. C., Luder G., Stiege A. C., Chai S., Weise F., Trautner T. A. 1997; The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. Gene 204:201–212 [CrossRef]
    [Google Scholar]
  2. Barenboim M., Chang C. Y., Hajj F., Young R. 1999; Characterization of the dual start motif of a class II holin gene. Mol Microbiol 32:715–727 [CrossRef]
    [Google Scholar]
  3. Bernhart T. G., Wang I. N., Struck D. K., Young R. 2002; Breaking free: “protein antibiotics” and phage lysis. Res Microbiol 153:493–501 [CrossRef]
    [Google Scholar]
  4. Bläsi U., Young R. 1996; Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21:675–682 [CrossRef]
    [Google Scholar]
  5. Bläsi U., Nam K., Hartz D., Gold L., Young R. 1989; Dual translational initiation sites control function of the lambda S gene. EMBO J 8:3501–3510
    [Google Scholar]
  6. Bläsi U., Chang C. Y., Zagotta M. T., Nam K., Young R. 1990; The lethal lambda S gene encodes its own inhibitor. EMBO J 9:981–989
    [Google Scholar]
  7. Bruttin A., Desiere F., Lucchini S., Foley S., Brüssow H. 1997; Characterization of the lysogeny module from the temperate Streptococcus thermophilus bacteriophage Sfi21. Virology 233:136–148 [CrossRef]
    [Google Scholar]
  8. Chang C.-Y., Nam K., Young R. 1995; S gene expression and the timing of lysis by bacteriophage lambda. J Bacteriol 177:3283–3294
    [Google Scholar]
  9. De Jonge B. L. M., Sidow T., Chang Y. S., Labischinski H., Berger-Bachi B., Gage D. A., Tomasz A. 1993; Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J Bacteriol 175:2779–2782
    [Google Scholar]
  10. Fischetti V. A. 2003; Novel method to control pathogenic bacteria on human mucous membranes. Ann N Y Acad Sci 987:207–214 [CrossRef]
    [Google Scholar]
  11. García J. L., García E., Arrarás A., García P., Ronda C., López R. 1987; Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J Virol 61:2573–2580
    [Google Scholar]
  12. Garrett J. M., Young R. 1982; Lethal action of bacteriophage lambda S gene. J Virol 44:886–892
    [Google Scholar]
  13. Gindreau E., Lonvaud-Funel A. 1999; Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage π 10MC. FEMS Microbiol Lett 219:275–283
    [Google Scholar]
  14. Graschopf A., Bläsi U. 1999; Molecular function of the dual start motif in the lambda S holin. Mol Microbiol 33:569–582 [CrossRef]
    [Google Scholar]
  15. Gründling A., Smith D. L., Bläsi U., Young R. 2000; Dimerization between the holin and holin inhibitor of phage lambda. J Bacteriol 182:6075–6081 [CrossRef]
    [Google Scholar]
  16. Gründling A., Manson M. D., Young R. 2001; Holins kill without warning. Proc Natl Acad Sci U S A 98:9348–9352 [CrossRef]
    [Google Scholar]
  17. Hartz D., McPheeters D. S., Gold L. 1991; Influence of mRNA determinants on translation initiation in Escherichia coli . J Mol Biol 218:83–97 [CrossRef]
    [Google Scholar]
  18. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166
    [Google Scholar]
  19. Jobling M. G., Holmes R. K. 1990; Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZα and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18:5315–5316 [CrossRef]
    [Google Scholar]
  20. Krogh S., Jørgensen S. T., Devine K. M. 1998; Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 180:2110–2117
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  22. Lanzer M., Bujard H. 1988; Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A 85:8973–8977 [CrossRef]
    [Google Scholar]
  23. Lepeuple A. S., Van Gemert E., Chapot-Chartier M. P. 1998; Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol 64:4142–4148
    [Google Scholar]
  24. Loeffler J. M., Djurkovic S., Fischetti V. A. 2003; Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204 [CrossRef]
    [Google Scholar]
  25. Loessner M. J., Schneider A., Scherer S. 1995; A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol 61:1150–1152
    [Google Scholar]
  26. Loessner M. J., Maier S. K., Daubek-Puza H., Wendlinger G., Scherer S. 1997; Three Bacillus cereus bacteriophage endolysins are unrelated but reveal homology to cell wall hydrolases from different bacilli. J Bacteriol 179:2845–2851
    [Google Scholar]
  27. Loessner M. J., Gaeng S., Wendlinger G., Maier S. K., Scherer S. 1998; The two-component lysis system of Staphylococcus aureus bacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiol Lett 162:265–274 [CrossRef]
    [Google Scholar]
  28. Loessner M. J., Gaeng S., Scherer S. 1999; Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. J Bacteriol 181:4452–4460
    [Google Scholar]
  29. Lowy F. D. 1998; Staphylococcus aureus infections. N Engl J Med 339:520–532 [CrossRef]
    [Google Scholar]
  30. McNamara P. J., Milligan-Monroe K. C., Khalili S., Proctor R. A. 2000; Identification, cloning, and initial characterization of rot , a locus encoding a regulator of virulence factor expression in Staphylococcus aureus . J Bacteriol 182:3197–3203 [CrossRef]
    [Google Scholar]
  31. Navarre W. W., Ton-That H., Faull K. F., Schneewind O. 1999; Multiple enzymatic activities of the murein hydrolase from Staphylococcal phage π 11. J Biol Chem 274:15847–15856 [CrossRef]
    [Google Scholar]
  32. O'Connor C. D., Timmis K. N. 1987; Highly repressible expression system for cloning genes that specify potentially toxic proteins. J Bacteriol 169:4457–4462
    [Google Scholar]
  33. Parreira R., Sao-Jose C., Isidro A., Domingues S., Vieira G., Santos M. A. 1999; Gene organization in a central DNA fragment of Oenococcus oeni bacteriophage fOg44 encoding lytic, integrative and non-essential functions. Gene 226:83–93 [CrossRef]
    [Google Scholar]
  34. Potvin C., Leclerc D., Tremblay G., Asselin A., Bellamare G. 1988; Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli . Mol Gen Genet 214:241–248 [CrossRef]
    [Google Scholar]
  35. Rennell D., Poteete A. R. 1985; Phage P22 lysis genes: nucleotide sequences and functional relationships with T4 and lambda genes. Virology 143:280–289 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Shearman C., Jury K., Gasson M. J. 1994; Controlled expression and structural organization of a Lactococcus lactis bacteriophage lysin encoded by two overlapping genes. Appl Environ Microbiol 60:3063–3073
    [Google Scholar]
  38. Sheehan M. M., Stanley E., Fitzgerald G. F., van Sinderen D. 1999; Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus . Appl Environ Microbiol 65:569–577
    [Google Scholar]
  39. Steiner M., Bläsi U. 1993; Charged amino-terminal amino acids affect the lethal capacity of lambda lysis proteins S107 and S105. Mol Microbiol 8:525–533 [CrossRef]
    [Google Scholar]
  40. Steiner M., Lubitz W., Bläsi U. 1993; The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage π 29 encodes the functional homolog of lambda S protein. J Bacteriol 175:1038–1042
    [Google Scholar]
  41. Vybiral D., Takáč M., Loessner M., Witte A., von Ahsen U., Bläsi U. 2003; Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol Lett 219:275–283 [CrossRef]
    [Google Scholar]
  42. Wang X., Wilkinson B. J., Jayaswal R. K. 1991; Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. Gene 102:105–109 [CrossRef]
    [Google Scholar]
  43. Wang I. N., Smith D. L., Young R. 2000; Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825 [CrossRef]
    [Google Scholar]
  44. Wang I. N., Deaton J., Young R. 2003; Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J Bacteriol 185:779–787 [CrossRef]
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  46. Young R. 1992; Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481
    [Google Scholar]
  47. Young R., Bläsi U. 1995; Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev 17:191–205 [CrossRef]
    [Google Scholar]
  48. Young R., Wang I. N., Roof W. D. 2000; Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128 [CrossRef]
    [Google Scholar]
  49. Zagotta M. T., Wilson D. B. 1990; Oligomerization of the bacteriophage lambda S protein in the inner membrane of Escherichia coli . J Bacteriol 172:912–921
    [Google Scholar]
  50. Zimmer M., Vukov N., Scherer S., Loessner M. J. 2002; The murein hydrolase of the bacteriophage Phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27937-0
Loading
/content/journal/micro/10.1099/mic.0.27937-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error