1887

Abstract

The heyday of continuous culture was in the 1960s, when its versatility and reproducibility were used to address fundamental problems in diverse microbiological fields such as biochemistry, ecology, genetics and physiology. The advent of molecular genetics in the 1970s and 1980s led to a decline in the popularity of continuous culture as a standard laboratory tool. The current trend of studying global proteomics, transcriptomics and metabolomics requires reproducible, reliable and biologically homogeneous datasets with which to approach a given problem. The use of continuous culture techniques can aid the acquisition of such data, and continuous cultures offer advantages over biologically heterogeneous batch cultures, where secondary growth and stress effects can often mask subtle physiological differences and trends. This review is intended to remind microbiologists of the value of continuous cultivation in a wide range of biological investigations, and describes some advantages and recent advances in applications of continuous culture in post-genomic studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27924-0
2005-10-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3153.html?itemId=/content/journal/micro/10.1099/mic.0.27924-0&mimeType=html&fmt=ahah

References

  1. Aon, J. C. & Cortassa, S. ( 2001; ). Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metab Eng 3, 250–264.[CrossRef]
    [Google Scholar]
  2. Avignone-Rossa, C., White, J., Kuiper, A., Postma, P. W., Bibb, M. & Teixeira de Mattos, M. J. ( 2002; ). Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab Eng 4, 138–150.[CrossRef]
    [Google Scholar]
  3. Baudouin-Cornu, P., Surdin-Kerjan, Y., Marliere, P. & Thomas, D. ( 2001; ). Molecular evolution of protein atomic composition. Science 293, 297–300.[CrossRef]
    [Google Scholar]
  4. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. ( 2003; ). The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278, 3265–3274.[CrossRef]
    [Google Scholar]
  5. Daran-Lapujade, P., Jansen, M. L., Daran, J. M., Van Gulik, W., De Winde, J. H. & Pronk, J. T. ( 2004; ). Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J Biol Chem 279, 9125–9138.[CrossRef]
    [Google Scholar]
  6. Dean, A. C. R., Ellwood, D. C., Evans, C. G. T. & Melling, J. ( 1976; ). Continuous Culture. 6. Applications and New Fields. Chichester: Ellis Horwood.
  7. Delneri, D., Brancia, F. L. & Oliver, S. G. ( 2001; ). Towards a truly integrative biology through the functional genomics of yeast. Curr Opin Biotechnol 12, 87–91.[CrossRef]
    [Google Scholar]
  8. Droop, M. R. ( 1968; ). Vitamin B12 and marine ecology. 4. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc U K 48, 689–733.[CrossRef]
    [Google Scholar]
  9. Droop, M. R. ( 1973; ). Some thoughts on nurient limitation in algae. J Phycol 9, 264–272.
    [Google Scholar]
  10. Droop, M. R. ( 1974; ). The nutrient status of algal cells in continuous culture. J Mar Biol Assoc U K 54, 825–855.[CrossRef]
    [Google Scholar]
  11. Dykhuizen, D. & Hartl, D. ( 1981; ). Evolution of competitive ability in Escherichia coli. Evolution 35, 581–594.[CrossRef]
    [Google Scholar]
  12. Dykhuizen, D. E. & Hartl, D. L. ( 1983; ). Selection in chemostats. Microbiol Rev 47, 150–168.
    [Google Scholar]
  13. Fredrickson, A. G., Megee, R. D. & Tsuchiya, H. M. ( 1970; ). Mathematical models for fermentation processes. Adv Appl Microbiol 13, 419–465.
    [Google Scholar]
  14. Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S. & Garrels, J. I. ( 1999; ). A sampling of the yeast proteome. Mol Cell Biol 19, 7357–7368.
    [Google Scholar]
  15. Goldman, J. C. & McCarthy, J. J. ( 1978; ). Steady-state growth and ammonium uptake of a fast-growing marine diatom. Limnol Oceanogr 23, 695–703.[CrossRef]
    [Google Scholar]
  16. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. & Aebersold, R. ( 1999; ). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.[CrossRef]
    [Google Scholar]
  17. Hartl, D. & Dykhuizen, D. ( 1979; ). A selectively driven molecular clock. Nature 281, 230–231.[CrossRef]
    [Google Scholar]
  18. Hayes, A., Zhang, N., Wu, J., Butler, P. R., Hauser, N. C., Hoheisel, J. D., Lim, F. L., Sharrocks, A. D. & Oliver, S. G. ( 2002; ). Hybridization array technology coupled with chemostat culture: tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26, 281–290.[CrossRef]
    [Google Scholar]
  19. Herbert, D. R., Elsworth, R. & Telling, R. C. ( 1956; ). The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol 14, 601–622.[CrossRef]
    [Google Scholar]
  20. Kirk, S., Avignone Rossa, C. & Bushell, M. E. ( 2000; ). Growth-limiting substrate affects antibiotic production and associated metabolic fluxes in Streptomyces clavuligerus. Biotechnol Lett 22, 1803–1809.[CrossRef]
    [Google Scholar]
  21. Kolkman, A., Olsthoorn, M. M., Heeremans, C. E., Heck, A. J. & Slijper, M. ( 2004; ). Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 4, 1–11.[CrossRef]
    [Google Scholar]
  22. Malek, I. & Fencl, Z. ( 1966; ). Theoretical and Methodological Basis of Continuous Culture of Microorganisms. Prague: Czech Academy of Sciences.
  23. Monod, J. ( 1942; ). Recherches sur la Croissance des Cultures Bactériennes. Paris: Hermann & Co.
  24. Monod, J. ( 1949; ). The growth of bacterial cultures. Annu Rev Microbiol 3, 371–394.[CrossRef]
    [Google Scholar]
  25. Monod, J. ( 1950; ). La technique de culture continue, théorie et applications. Ann Inst Pasteur 79, 390–410.
    [Google Scholar]
  26. Notley-McRobb, L. & Ferenci, T. ( 1999; ). The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1, 45–52.[CrossRef]
    [Google Scholar]
  27. Notley-McRobb, L., Seeto, S. & Ferenci, T. ( 2003; ). The influence of cellular physiology on the initiation of mutational pathways in Escherichia coli populations. Proc R Soc Lond B Biol Sci 270, 843–848.[CrossRef]
    [Google Scholar]
  28. Novick, A. & Szilard, L. ( 1950; ). Description of the chemostat. Science 112, 715–716.[CrossRef]
    [Google Scholar]
  29. Piper, M. D., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. & Pronk, J. T. ( 2002; ). Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277, 37001–37008.[CrossRef]
    [Google Scholar]
  30. Pirt, S. J. ( 1966; ). The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163, 224–231.
    [Google Scholar]
  31. Pirt, S. J. ( 1975; ). Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications.
  32. Pratt, J. M., Petty, J., Riba-Garcia, I., Robertson, D. H., Gaskell, S. J., Oliver, S. G. & Beynon, R. J. ( 2002; ). Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1, 579–591.[CrossRef]
    [Google Scholar]
  33. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  34. Solomons, G. L. ( 1983; ). Single cell protein. Crit Rev Biotechnol 1, 21–58.[CrossRef]
    [Google Scholar]
  35. Stephanopoulos, G. ( 1999; ). Metabolic fluxes and metabolic engineering. Metab Eng 1, 1–11.[CrossRef]
    [Google Scholar]
  36. Suiter, A. M., Banziger, O. & Dean, A. M. ( 2003; ). Fitness consequences of a regulatory polymorphism in a seasonal environment. Proc Natl Acad Sci U S A 100, 12782–12786.[CrossRef]
    [Google Scholar]
  37. Tempest, D. W. ( 1969; ). The continuous cultivation of microorganisms. I. Theory of the chemostat. Methods Microbiol 2, 260–276.
    [Google Scholar]
  38. Ter Linde, J. J. M., Liang, H., Davis, R. W., Steensma, H. Y., van Dijken, J. P. & Pronk, J. T. ( 1999; ). Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181, 7409–7413.
    [Google Scholar]
  39. Trinci, A. P. J. ( 1991; ). Myco-protein: a twenty year overnight success story. Mycol Res 96, 1–13.
    [Google Scholar]
  40. Trinci, A. P. J. ( 1994; ). Evolution of the Quorn myco-protein fungus, Fusarium graminarium A3/5. Microbiology 140, 2181–2188.[CrossRef]
    [Google Scholar]
  41. Werner-Washburne, M., Braun, E. L., Crawford, M. E. & Peck, V. M. ( 1996; ). Stationary phase in Saccharomyces cerevisiae. Mol Microbiol 19, 1159–1166.[CrossRef]
    [Google Scholar]
  42. Wick, L. M., Quadroni, M. & Egli, T. ( 2001; ). Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 3, 588–599.[CrossRef]
    [Google Scholar]
  43. Wimpenny, J. W. T. ( 1988; ). Bidirectional linked continuous culture: the gradostat. In Handbook of Laboratory Model Systems for Microbial Ecosystems, vol. 1, pp. 79–98. Edited by J. W. T. Wimpenny. Boca Raton, FL: CRC Press.
  44. Wimpenny, J. W. T. ( 1989; ). Laboratory model systems for the experimental investigation of gradient communities. In Microbial Mats: Physiological Ecology of Benthic Communities, pp. 366–383. Edited by Y. Cohen & E. Rosenberg. Washington, DC: American Society for Microbiology.
  45. Wu, J., Zhang, N., Hayes, A., Panoutsopoulou, K. & Oliver, S. G. ( 2004; ). Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101, 3148–3153.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27924-0
Loading
/content/journal/micro/10.1099/mic.0.27924-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error