1887

Abstract

strains harbouring elongator tRNAs that insert amino acids in response to a termination codon during elongation have been generated for various applications. Additionally, it was shown that expression of an initiator tRNA containing a CUA anticodon from a multicopy plasmid in resulted in initiation from an amber codon. Even though the initiation-based system remedies toxicity-related drawbacks, its usefulness has remained limited for want of a strain with a chromosomally encoded initiator tRNA ‘suppressor’. K strains possess four initiator tRNA genes: the , and genes, located at a single locus, encode tRNA , and a distantly located gene encodes a variant, tRNA . In this study, a stable strain of K-12 that affords efficient initiation from an amber initiation codon was isolated. Genetic analysis revealed that the gene in this strain acquired mutations to encode tRNA with a CUA anticodon (a U35A36 mutation). The acquisition of the mutations depended on the presence of a plasmid-borne copy of the mutant and host background. The mutations were observed when the plasmid-borne gene encoded tRNA (U35A36) with additional changes in the acceptor stem (G72; G72G73) but not in the anticodon stem (U29C30A31/U35A36/ψ39G40A41). The usefulness of this strain, and a possible role for multiple tRNA genes in in safeguarding their intactness, are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27915-0
2005-06-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511741.html?itemId=/content/journal/micro/10.1099/mic.0.27915-0&mimeType=html&fmt=ahah

References

  1. Atlung, T., Christensen, B. B. & Hansen, F. G. ( 1999; ). Role of the rom protein in copy number control of plasmid pBR322 at different growth rates in Escherichia coli K-12. Plasmid 41, 110–119.[CrossRef]
    [Google Scholar]
  2. Bain, J. D., Glabe, C. G., Dix, J. A., Chamberlin, A. R. & Diala, E. S. ( 1989; ). Biosynthetic site specific incorporation of a non-natural amino acid into a polypeptide. Biochemistry 29, 5881–5889.
    [Google Scholar]
  3. Berlyn, M. K. ( 1998; ). Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62, 814–984.
    [Google Scholar]
  4. Brenner, S. & Beckwith, J. R. ( 1965; ). Ochre mutants, a new class of suppressible nonsense mutants. J Mol Biol 13, 629–637.[CrossRef]
    [Google Scholar]
  5. Chattapadhyay, R., Pelka, H. & Schulman, L. H. ( 1990; ). Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29, 4263–4268.[CrossRef]
    [Google Scholar]
  6. Cornish, V. W., Benson, D. R., Altenbach, C. A., Hideg, K., Hubbell, W. L. & Schultz, P. G. ( 1994; ). Site-specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci U S A 91, 2910–2914.[CrossRef]
    [Google Scholar]
  7. Craigen, W. J. & Caskey, C. T. ( 1986; ). Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322, 273–275.[CrossRef]
    [Google Scholar]
  8. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  9. Ellman, J., Mendel, D., Cahill, S. A., Noren, C. J. & Schultz, P. G. ( 1991; ). Biosynthetic method for introducing unnatural amino acids site specifically into proteins. Methods Enzymol 202, 301–336.
    [Google Scholar]
  10. Gold, L. ( 1988; ). Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57, 199–233.[CrossRef]
    [Google Scholar]
  11. Guillon, J. M., Heiss, S., Soutourina, J., Mechulam, Y., Laalami, S., Grunberg-Monago, M. & Blanquet, S. ( 1996; ). Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J Biol Chem 271, 22321–22325.[CrossRef]
    [Google Scholar]
  12. Hashimoto, J. G., Stevenson, B. S. & Schmidt, T. M. ( 2003; ). Rates and consequences of recombination between rRNA operons. J Bacteriol 185, 966–972.[CrossRef]
    [Google Scholar]
  13. Kenri, T., Kohno, K., Goshima, N., Imamoto, F. & Kano, Y. ( 1991; ). Construction and characterization of an Escherichia coli mutant with a deletion of the metZ gene encoding tRNAf1 Met. Gene 103, 31–36.[CrossRef]
    [Google Scholar]
  14. Kenri, T., Imamoto, F. & Kano, Y. ( 1992; ). Construction and characterization of an Escherichia coli mutant deficient in the metY gene encoding tRNA(f2Met): either tRNA(f1Met) or tRNA(f2Met) is required for cell growth. Gene 114, 109–114.[CrossRef]
    [Google Scholar]
  15. Kleina, L. G., Masson, J. M., Normanly, J., Abelson, J. & Miller, J. H. ( 1990; ). Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J Mol Biol 213, 705–717.[CrossRef]
    [Google Scholar]
  16. Kozak, M. ( 1983; ). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47, 1–45.
    [Google Scholar]
  17. Lee, C. P. & RajBhandary, U. L. ( 1991; ). Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J Biol Chem 266, 18012–18017.
    [Google Scholar]
  18. Mahadevan, S., Reynolds, A. E. & Wright, A. ( 1987; ). Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol 169, 2570–2578.
    [Google Scholar]
  19. Mamaev, S., Olejnik, J., Olejnik, E. K. & Rothschild, K. J. ( 2004; ). Cell-free N-terminal protein labeling using initiator suppressor tRNA. Anal Biochem 326, 25–32.[CrossRef]
    [Google Scholar]
  20. Mandal, N. & RajBhandary, U. L. ( 1992; ). Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol 174, 7827–7830.
    [Google Scholar]
  21. Mandal, N., Mangroo, D., Dalluge, J. J., McCloskey, J. A. & RajBhandary, U. L. ( 1996; ). Role of the three consecutive G : C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. RNA 5, 473–482.
    [Google Scholar]
  22. Mangroo, D. & RajBhandary, U. L. ( 1995; ). Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem 270, 12203–12209.[CrossRef]
    [Google Scholar]
  23. Mansell, J. B., Guevremont, D., Poole, E. S. & Tate, W. P. ( 2001; ). A dynamic competition between release factor 2 and the tRNASec decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H. EMBO J 20, 7284–7293.[CrossRef]
    [Google Scholar]
  24. Mayer, C., Stortchevoi, A., Kohrer, C., Varshney, U. & RajBhandary, U. L. ( 2001; ). Initiator tRNA and its role in initiation of protein synthesis. Cold Spring Harbor Symp Quant Biol 66, 195–206.[CrossRef]
    [Google Scholar]
  25. Mayer, C., Kohrer, C., Kenny, E., Prusko, C. & RajBhandary, U. L. ( 2003; ). Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl tRNA synthetases, methionyl-tRNA formyltransferase and initiation factor 2 on activity in initiation. Biochemistry 42, 4787–4799.[CrossRef]
    [Google Scholar]
  26. Miller, J. H. ( 1972; ). Generalized transduction: use of P1 in strain construction. In Experiments in Molecular Genetics, pp. 201–205. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Murgola, E. J., Prather, N. E., Pagel, F. T., Mims, B. H. & Hijazi, K. A. ( 1984; ). Missense and nonsense suppressors derived from a glycine tRNA by nucleotide insertion and deletion in vivo. Mol Gen Genet 193, 76–81.[CrossRef]
    [Google Scholar]
  28. Normanly, J. & Abelson, J. ( 1989; ). tRNA identity. Annual Rev Biochem 58, 1029–1049.[CrossRef]
    [Google Scholar]
  29. Normanly, J., Kleina, L. G., Masson, J. M., Abelson, J. & Miller, J. H. ( 1990; ). Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J Mol Biol 213, 719–726.[CrossRef]
    [Google Scholar]
  30. O'Connor, M., Gregory, S. T., RajBhandary, U. L. & Dahlberg, A. E. ( 2001; ). Altered discrimination of start codons and initiator tRNAs by mutant initiation factor 3. RNA 7, 969–978.[CrossRef]
    [Google Scholar]
  31. Pallanck, L. & Schulman, L. H. ( 1991; ). Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc Natl Acad Sci U S A 88, 3872–3876.[CrossRef]
    [Google Scholar]
  32. RajBhandary, U. L. ( 1994; ). Initiator transfer RNAs. J Bacteriol 176, 547–552.
    [Google Scholar]
  33. RajBhandary, U. L. & Chow, C. M. ( 1995; ). Initiator tRNAs and initiation of protein synthesis. In tRNA: Structure, Biosynthesis, and Function, p. 511. Edited by D. Soll & U. L. RajBhandary. Washington, DC: American Society for Microbiology.
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sarin, P. S. & Zamecnik, P. C. ( 1964; ). On the stability of aminoacyl soluble ribonucleic acid to nucleophilic catalysis. Biochim Biophys Acta 91, 653–655.
    [Google Scholar]
  36. Schulman, L. H. & Pelka, H. ( 1985; ). In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24, 7309–7314.[CrossRef]
    [Google Scholar]
  37. Seong, B. L. & RajBhandary, U. L. ( 1987; ). Escherichia coli formylmethionine tRNA: mutations in GGG : CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci U S A 84, 334–338.[CrossRef]
    [Google Scholar]
  38. Seong, B. L., Lee, C. P. & RajBhandary, U. L. ( 1989; ). Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis. J Biol Chem 246, 6504–6508.
    [Google Scholar]
  39. Shaw, W. V. ( 1983; ). Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem 14, 1–46.
    [Google Scholar]
  40. Singer, M., Baker, T. A., Schnitzler, G. & 7 other authors ( 1989; ). A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53, 1–24.
    [Google Scholar]
  41. Snyder, L. & Champness, W. ( 1997; ). Mutations in bacteria. In Molecular Genetics of Bacteria, pp. 75–103. Washington, DC: American Society for Microbiology.
  42. Steege, D. A. & Soll, D. G. ( 1979; ). Suppression. In Biological Regulation and Development, vol. 1, pp. 433–485. Edited by R. F. Goldberger. New York: Plenum.
  43. Tate, W. P. & Mannering, S. A. ( 1996; ). Three, four or more: the translational stop signal at length. Mol Microbiol 21, 213–219.[CrossRef]
    [Google Scholar]
  44. Thanedar, S., Kumar, N. V. & Varshney, U. ( 2000; ). The fate of the initiator tRNAs is sensitive to the critical balance between interacting proteins. J Biol Chem 275, 20361–20367.[CrossRef]
    [Google Scholar]
  45. Varshney, U. & RajBhandary, U. L. ( 1990; ). Initiation of protein synthesis from a termination codon. Proc Natl Acad Sci U S A 87, 1586–1590.[CrossRef]
    [Google Scholar]
  46. Varshney, U. & RajBhandary, U. L. ( 1992; ). Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J Bacteriol 174, 7819–7826.
    [Google Scholar]
  47. Varshney, U., Lee, C. P. & RajBhandary, U. L. ( 1991a; ). Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem 266, 24712–24718.
    [Google Scholar]
  48. Varshney, U., Lee, C. P., Seong, B. L. & RajBhandary, U. L. ( 1991b; ). Mutants of initiator tRNA that function both as initiators and elongators. J Biol Chem 266, 18018–18024.
    [Google Scholar]
  49. Wu, X. Q. & RajBhandary, U. L. ( 1997; ). Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J Biol Chem 272, 1891–1895.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27915-0
Loading
/content/journal/micro/10.1099/mic.0.27915-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error