1887

Abstract

and are close relatives of the glutamate-producing mycolata species . The properties of the pore-forming proteins, extracted by organic solvents, were studied. The cell extracts contained channel-forming proteins that formed ion-permeable channels with a single-channel conductance of about 2 to 3 nS in 1 M KCl in a lipid bilayer assay. The corresponding proteins from both corynebacteria were purified to homogeneity and were named PorH and PorH. Electrophysiological studies of the channels suggested that they are wide and water-filled. Channels formed by PorH are cation-selective, whereas PorH forms slightly anion-selective channels. Both proteins were partially sequenced. A multiple sequence alignment search within the known chromosome of demonstrated that it contains a gene that fits the partial amino acid sequence of PorH. PorH shows high homology to PorH. PorH is encoded in the bacterial chromosome by a gene that is localized within the vicinity of the gene of . PorH has no signal sequence at the N terminus, which means that it is not exported by the Sec-secretion pathway. The structure of PorH in the cell wall of the corynebacteria is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27903-0
2005-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512429.html?itemId=/content/journal/micro/10.1099/mic.0.27903-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Barksdale, L. ( 1981; ). The genus Corynebacterium. In the Prokaryotes, pp. 1827–1837. Edited by M. P. Starr, H. Stoll, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  3. Benz, R. ( 1994; ). Solute uptake through the bacterial outer membrane. In Bacterial Cell Wall, pp. 397–423. Edited by J. M. Ghuysen & R. Hakenbeck. Amsterdam: Elsevier.
  4. Benz, R. ( 2001; ). Porins – structure and function. In Microbial Transport Systems, pp. 227–246. Edited by G. Winkelmann. Weinheim: Wiley.
  5. Benz, R. ( 2003; ). Investigation of substrate-specific porin channels in lipid bilayer membranes. In Planar Lipid Bilayers (BLMs) and their Applications, pp. 347–369. Edited by H. T. Tien & A. Ottova-Leitmannova. Amsterdam: Elsevier.
  6. Benz, R., Janko, K., Boos, W. & Läuger, P. ( 1978; ). Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 511, 305–319.[CrossRef]
    [Google Scholar]
  7. Benz, R., Janko, K. & Läuger, P. ( 1979; ). Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 551, 238–247.[CrossRef]
    [Google Scholar]
  8. Benz, R., Schmid, A., Wagner, W. & Goebel, W. ( 1989; ). Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect Immun 57, 887–895.
    [Google Scholar]
  9. Benz, R., Hardie, K. R. & Hughes, C. ( 1994; ). Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Eur J Biochem 220, 339–347.[CrossRef]
    [Google Scholar]
  10. Blum, B., Beier, H. & Gross, H. J. ( 1987; ). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.[CrossRef]
    [Google Scholar]
  11. Brennan, P. J. & Nikaido, H. ( 1995; ). The envelope of mycobacteria. Annu Rev Biochem 64, 29–63.[CrossRef]
    [Google Scholar]
  12. Costa-Riu, N., Burkovski, A., Krämer, R. & Benz, R. ( 2003a; ). PorA represents the major cell wall channel of the gram-positive bacterium Corynebacterium glutamicum. J Bacteriol 185, 4779–4786.[CrossRef]
    [Google Scholar]
  13. Costa-Riu, N., Maier, E., Burkovski, A., Krämer, R., Lottspeich, F. & Benz, R. ( 2003b; ). Identification of an anion-specific channel in the cell wall of the gram-positive bacterium Corynebacterium glutamicum. Mol Microbiol 50, 1295–1308.[CrossRef]
    [Google Scholar]
  14. Daffé, M., Brennan, P. J. & McNeil, M. ( 1990; ). Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J Biol Chem 265, 6734–6743.
    [Google Scholar]
  15. Eggeling, L. & Sahm, H. ( 1999; ). Glutamate and l-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52, 146–153.[CrossRef]
    [Google Scholar]
  16. Faller, M., Niederweis, M. & Schulz, G. E. ( 2004; ). The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192.[CrossRef]
    [Google Scholar]
  17. Freudl, R. ( 1992; ). Protein secretion in gram-positive bacteria. J Biotechnol 23, 231–240.[CrossRef]
    [Google Scholar]
  18. Fudou, R., Jojima, Y., Seto, A., Yamada, K., Kimura, E., Nakamatsu, T., Hirashi, A. & Yamanaka, S. ( 2002; ). Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Bacteriol 52, 1127–1131.[CrossRef]
    [Google Scholar]
  19. Goodfellow, M., Collins, M. D. & Minnikin, D. E. ( 1976; ). Thin-layer chromatographic analysis of mycolic acid and other long-chain components in whole-organism methanolysates of coryneform and related taxa. J Gen Microbiol 96, 351–358.[CrossRef]
    [Google Scholar]
  20. Gross, E. ( 1967; ). The cyanogen bromide reaction. Methods Enzymol 11, 238–255.
    [Google Scholar]
  21. Gutmann, M., Hoischen, C. & Krämer, R. ( 1992; ). Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112, 115–123.[CrossRef]
    [Google Scholar]
  22. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. ( 1994; ). Nocardioform actinomycetes. In Bergey's Manual of Determinative Biology, 9th edn, pp. 625–650. Baltimore: Williams & Wilkins.
  23. Jarlier, V. & Nikaido, H. ( 1990; ). Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172, 1418–1423.
    [Google Scholar]
  24. Keilhauer, C., Eggeling, L. & Sahm, H. ( 1993; ). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595–5603.
    [Google Scholar]
  25. Lichtinger, T., Burkovski, A., Niederweis, M., Krämer, R. & Benz, R. ( 1998; ). Biochemical and biophysical characterization of the cell wall channel of Corynebacterium glutamicum: the channel is formed by a low molecular mass subunit. Biochemistry 37, 15024–15032.[CrossRef]
    [Google Scholar]
  26. Lichtinger, T., Heym, B., Maier, E., Eichner, H., Cole, S. T. & Benz, R. ( 1999; ). Evidence for a small anion-selective channel in the cell wall of Mycobacterium bovis BCG besides a wide cation-selective pore. FEBS Lett 454, 349–355.[CrossRef]
    [Google Scholar]
  27. Lichtinger, T., Reiss, G. & Benz, R. ( 2000; ). Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J Bacteriol 182, 764–770.[CrossRef]
    [Google Scholar]
  28. Lichtinger, T., Riess, F. G., Burkovski, A., Engelbrecht, F., Hesse, D., Kratzin, H. D., Krämer, R. & Benz, R. ( 2001; ). The low-molecular-mass subunit of the cell wall channel of the Gram-positive Corynebacterium glutamicum. Immunological localization, cloning and sequencing of its gene porA. Eur J Biochem 268, 462–469.
    [Google Scholar]
  29. Liu, J., Rosenberg, E. Y. & Nikaido, H. ( 1995; ). Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci U S A 92, 11254–11258.[CrossRef]
    [Google Scholar]
  30. Liu, J., Barry, C. E., III, Besra, G. S. & Nikaido, H. ( 1996; ). Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271, 29545–29551.[CrossRef]
    [Google Scholar]
  31. Ludwig, O., De Pinto, V., Palmieri, F. & Benz, R. ( 1986; ). Pore formation by the mitochondrial porin of rat brain in lipid bilayer membranes. Biochim Biophys Acta 860, 268–276.[CrossRef]
    [Google Scholar]
  32. Marienfeld, S., Uhlemann, E. M., Schmid, R., Krämer, R. & Burkovski, A. ( 1997; ). Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie Van Leeuwenhoek 72, 291–297.[CrossRef]
    [Google Scholar]
  33. Menestrina, G. & Antolini, R. ( 1981; ). Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes. Biochim Biophys Acta 643, 616–625.[CrossRef]
    [Google Scholar]
  34. Minnikin, D. E. ( 1987; ). Chemical targets in cell envelopes. In Chemotherapy of Tropical Diseases, pp. 19–43. Edited by M. Hopper. Chichester: Wiley.
  35. Minnikin, D. E. ( 1991; ). Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res Microbiol 142, 423–427.[CrossRef]
    [Google Scholar]
  36. Minnikin, D. E., Patel, P. V. & Goodfellow, M. ( 1974; ). Mycolic acids of representative strains of Nocardia and the ‘rhodochrous' complex. FEBS Lett 39, 322–324.[CrossRef]
    [Google Scholar]
  37. Minnikin, D. E., Minnikin, S. M., Goodfellow, M. & Stanford, J. L. ( 1982; ). The mycolic acids of Mycobacterium chelonei. J Gen Microbiol 128, 817–822.
    [Google Scholar]
  38. Nelson, A. P. & McQuarrie, D. A. ( 1975; ). The effect of discrete charges on the electrical properties of the membrane. J Theor Biol 55, 13–27.[CrossRef]
    [Google Scholar]
  39. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. ( 1988; ). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.[CrossRef]
    [Google Scholar]
  40. Niederweis, M., Ehrt, S., Heinz, C., Klöcker, U., Karosi, S., Swiderek, K. M., Riley, L. W. & Benz, R. ( 1999; ). Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33, 933–945.[CrossRef]
    [Google Scholar]
  41. Nikaido, H., Kim, S. H. & Rosenberg, E. Y. ( 1993; ). Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 8, 1025–1030.[CrossRef]
    [Google Scholar]
  42. Ochi, K. ( 1995; ). Phylogenetic analysis of mycolic acid-containing wall-chemotype IV actinomycetes and allied taxa by partial sequencing of ribosomal protein AT-L30. Int J Syst Bacteriol 45, 653–660.[CrossRef]
    [Google Scholar]
  43. Puech, V., Chami, M., Lemassu, A. & 7 other authors ( 2001; ). Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147, 1365–1382.
    [Google Scholar]
  44. Riess, F. G., Lichtinger, T., Cseh, R., Yassin, A. F., Schaal, K. P. & Benz, R. ( 1998; ). The cell wall channel of Nocardia farcinica: biochemical identification of the channel-forming protein and biophysical characterization of the channel properties. Mol Microbiol 29, 139–150.[CrossRef]
    [Google Scholar]
  45. Riess, F. G., Elflein, M., Benk, M., Schiffler, B., Benz, R., Garton, N. & Suttcliffe, I. ( 2003; ). The cell wall of the pathogenic bacterium Rhodococcus equi contains two channel-forming proteins of different properties. J Bacteriol 145, 2952–2960.
    [Google Scholar]
  46. Sahm, H., Eggeling, L., Eikmanns, B. & Krämer, R. ( 1996; ). Construction of l-lysine-, l-threonine-, and l-isoleucine-overproducing strains of Corynebacterium glutamicum. Ann NY Acad Sci 782, 25–39.[CrossRef]
    [Google Scholar]
  47. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  48. Stahl, C., Kubetzko, S., Kaps, I., Seeber, S., Engelhardt, H. & Niederweis, M. ( 2001; ). MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 40, 451–464.[CrossRef]
    [Google Scholar]
  49. Trias, J. & Benz, R. ( 1993; ). Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J Biol Chem 268, 6234–6240.
    [Google Scholar]
  50. Trias, J. & Benz, R. ( 1994; ). Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol 14, 283–290.[CrossRef]
    [Google Scholar]
  51. Trias, J., Jarlier, V. & Benz, R. ( 1992; ). Porins in the cell wall of mycobacteria. Science 258, 1479–1481.[CrossRef]
    [Google Scholar]
  52. Udaka, S. ( 1960; ). Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79, 745–755.
    [Google Scholar]
  53. Yano, I. & Saito, K. ( 1972; ). Gas chromatographic and mass spectrometric analysis of molecular species of corynomycolic acids from Corynebacterium ulcerans. FEBS Lett 23, 352–356.[CrossRef]
    [Google Scholar]
  54. Yassin, A. F., Rainey, F. A., Brzezinka, H. & 8 other authors ( 1997; ). Tsukamurella tyrosinosolvens sp. nov. Int J Syst Bacteriol 47, 607–614.[CrossRef]
    [Google Scholar]
  55. Zhang, J. & Madden, T. L. ( 1997; ). PowerBLAST: a new network blast application for interactive or automated sequence analysis and annotation. Genome Res 7, 649–656.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27903-0
Loading
/content/journal/micro/10.1099/mic.0.27903-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error