1887

Abstract

A key event in cytokinesis in bacteria is the assembly of the essential division protein FtsZ into ring-like structures at the nascent division site. FtsZ is the prokaryotic homologue of tubulin, and is found in nearly all bacteria. , FtsZ polymerizes in the presence of GTP to form higher-ordered polymers. FtsZ consists of two domains, with the GTP-binding site located in the N-terminal domain. The less-conserved C-terminal domain contains residues important for GTP hydrolysis, but its overall function is still unclear. This paper reports the development of a simple strategy to generate mutations in the essential division gene . Nine novel and viable mutants of are described. Eight of the mutations would affect the C-terminus of FtsZ. The collection of mutants exhibits a range of morphological phenotypes, ranging from normal to highly filamentous cells; some produce minicells, or divide in a twisted configuration; one mutation has a temperature-sensitive effect specifically impairing sporulation. The sites of the amino acid changes generated by the mutations could be informative about FtsZ function and its protein–protein interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27899-0
2005-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512053.html?itemId=/content/journal/micro/10.1099/mic.0.27899-0&mimeType=html&fmt=ahah

References

  1. Addinall S. G., Lutkenhaus J. 1996; FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 22:231–237 [CrossRef]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen C. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  3. Barak I., Youngman P. 1996; SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J Bacteriol 178:4984–4989
    [Google Scholar]
  4. Beall B., Lutkenhaus J. 1992; Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J Bacteriol 174:2398–2403
    [Google Scholar]
  5. Beall B., Lowe M., Lutkenhaus J. 1988; Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA . J Bacteriol 170:4855–4864
    [Google Scholar]
  6. Ben-Yehuda S., Losick R. 2002; Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266 [CrossRef]
    [Google Scholar]
  7. Bi E., Lutkenhaus J. 1990; Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (SfiA. J Bacteriol 172:5602–5609
    [Google Scholar]
  8. Bi E., Lutkenhaus J. 1992; Isolation and characterization of ftsZ alleles that affect septal morphology. J Bacteriol 174:5414–5423
    [Google Scholar]
  9. Bramhill D., Thompson C. M. 1994; GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A 91:5813–5817 [CrossRef]
    [Google Scholar]
  10. Daniel R. A., Errington J. 2000; Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 36:278–289 [CrossRef]
    [Google Scholar]
  11. Daniel R. A., Harry E. J., Errington J. 2000; Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35:299–311 [CrossRef]
    [Google Scholar]
  12. Erickson H. P., Taylor D. W., Taylor K. A., Bramhill D. 1996; Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523 [CrossRef]
    [Google Scholar]
  13. Errington J. 1984; Efficient Bacillus subtilis cloning system using bacteriophage vector π105J9. J Gen Microbiol 130:2615–2628
    [Google Scholar]
  14. Errington J. 2003; Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126 [CrossRef]
    [Google Scholar]
  15. Errington J., Mandelstam J. 1986; Use of a lacZ gene fusion to determine the dependence pattern of sporulation operonspoIIA in spo mutants of Bacillus subtilis . J Gen Microbiol 132:2967–2976
    [Google Scholar]
  16. Errington J., Daniel R. A., Scheffers D. J. 2003; Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65 [CrossRef]
    [Google Scholar]
  17. Feucht A., Magnin T., Yudkin M. D., Errington J. 1996; Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev 10:794–803 [CrossRef]
    [Google Scholar]
  18. Feucht A., Daniel R. A., Errington J. 1999; Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol Microbiol 33:1015–1026 [CrossRef]
    [Google Scholar]
  19. Feucht A., Lucet I., Yudkin M. D., Errington J. 2001; Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125 [CrossRef]
    [Google Scholar]
  20. Feucht A., Abbotts L., Errington J. 2002; The cell differentiation protein SpoIIE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. Mol Microbiol 45:1119–1130 [CrossRef]
    [Google Scholar]
  21. Gueiros-Filho F. J., Losick R. 2002; A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16:2544–2556 [CrossRef]
    [Google Scholar]
  22. Haeusser D. P., Schwartz R. L., Smith A. M., Oates M. E., Levin P. A. 2004; EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 52:801–814 [CrossRef]
    [Google Scholar]
  23. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol 129:1945–1958
    [Google Scholar]
  24. Katis V. L., Wake R. G., Harry E. J. 2000; Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J Bacteriol 182:3607–3611 [CrossRef]
    [Google Scholar]
  25. Kemp J. T., Driks A., Losick R. 2002; FtsA mutants of Bacillus subtilis impaired in sporulation. J Bacteriol 184:3856–3863 [CrossRef]
    [Google Scholar]
  26. Khvorova A., Zhang L., Higgins M. L., Piggot P. J. 1998; The spoIIE locus is involved in the Spo0A-dependent switch in the location of FtsZ rings in Bacillus subtilis. J Bacteriol 180:1256–1260
    [Google Scholar]
  27. King N., Dreesen O., Stragier P., Pogliano K., Losick R. 1999; Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis . Genes Dev 13:1156–1167 [CrossRef]
    [Google Scholar]
  28. Levin P. A., Shim J. J., Grossman A. D. 1998; Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J Bacteriol 180:6048–6051
    [Google Scholar]
  29. Lewis P. J., Errington J. 1996; Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142:733–740 [CrossRef]
    [Google Scholar]
  30. Low H. H., Moncrieffe M. C., Lowe J. 2004; The crystal structure of ZapA and its modulation of FtsZ polymerization. J Mol Biol 341:839–852 [CrossRef]
    [Google Scholar]
  31. Lowe J., Amos L. A. 1998; Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206 [CrossRef]
    [Google Scholar]
  32. Lowe J., Amos L. A. 1999; Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18:2364–2371 [CrossRef]
    [Google Scholar]
  33. Lucet I., Feucht A., Yudkin M. D., Errington J. 2000; Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J 19:1467–1475 [CrossRef]
    [Google Scholar]
  34. Ma X., Margolin W. 1999; Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181:7531–7544
    [Google Scholar]
  35. Marston A. L., Errington J. 1999; Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33:84–96 [CrossRef]
    [Google Scholar]
  36. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430 [CrossRef]
    [Google Scholar]
  37. Meissner P. S., Sisk W. P., Berman M. L. 1987; Bacteriophage λ cloning system for the construction of directional cDNA libraries. Proc Natl Acad Sci U S A 84:4171–4175 [CrossRef]
    [Google Scholar]
  38. Mosyak L., Zhang Y., Glasfeld E., Haney S., Stahl M., Seehra J., Somers W. S. 2000; The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19:3179–3191 [CrossRef]
    [Google Scholar]
  39. Mukherjee A., Lutkenhaus J. 1994; Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176:2754–2758
    [Google Scholar]
  40. Mukherjee A., Lutkenhaus J. 1998; Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17:462–469 [CrossRef]
    [Google Scholar]
  41. Nogales E., Wolf S. G., Downing K. H. 1998; Structure of the αβ tubulin dimer by electron crystallography. Nature 391:199–203 [CrossRef]
    [Google Scholar]
  42. Palacios P., Vicente M., Sanchez M. 1996; Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol Microbiol 20:1093–1098 [CrossRef]
    [Google Scholar]
  43. Partridge S. R., Errington J. 1993; The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8:945–955 [CrossRef]
    [Google Scholar]
  44. Pogliano K., Harry E., Losick R. 1995; Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol Microbiol 18:459–470 [CrossRef]
    [Google Scholar]
  45. Resnekov O., Alper S., Losick R. 1996; Subcellular localization of proteins governing the proteolytic activation of a developmental transcription factor in Bacillus subtilis. Genes Cells 1:529–542 [CrossRef]
    [Google Scholar]
  46. Romberg L., Levin P. A. 2003; Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57:125–154 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Scheffers D. J., de Wit J. G., den Blaauwen T., Driessen A. J. 2002; GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41:521–529 [CrossRef]
    [Google Scholar]
  49. Sharpe M. E., Hauser P. M., Sharpe R. G., Errington J. 1998; Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180:547–555
    [Google Scholar]
  50. Sievers J., Raether B., Perego M., Errington J. 2002; Characterization of the parB-like yyaA gene of Bacillus subtilis . J Bacteriol 184:1102–1111 [CrossRef]
    [Google Scholar]
  51. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37
    [Google Scholar]
  52. Stevens C. M., Daniel R., Illing N., Errington J. 1992; Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis . J Bacteriol 174:586–594
    [Google Scholar]
  53. Stricker J., Erickson H. P. 2003; In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 185:4796–4805 [CrossRef]
    [Google Scholar]
  54. Thomaides H. B., Freeman M., El Karoui M., Errington J. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673 [CrossRef]
    [Google Scholar]
  55. Vaughan S., Wickstead B., Gull K., Addinall S. G. 2004; Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58:19–29 [CrossRef]
    [Google Scholar]
  56. Wang X., Huang J., Mukherjee A., Cao C., Lutkenhaus J. 1997; Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179:5551–5559
    [Google Scholar]
  57. Ward J. E., Lutkenhaus J. Jr 1985; Overproduction of FtsZ induces minicell formation in E. coli . Cell 42:941–949 [CrossRef]
    [Google Scholar]
  58. Weart R. B., Levin P. A. 2003; Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185:2826–2834 [CrossRef]
    [Google Scholar]
  59. Wu L. J., Errington J. 2004; Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925 [CrossRef]
    [Google Scholar]
  60. Young M. 1976; Use of temperature-sensitive mutants to study gene expression during sporulation in Bacillus subtilis. J Bacteriol 126:928–936
    [Google Scholar]
  61. Yu X. C., Margolin W. 1997; Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455–5463 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27899-0
Loading
/content/journal/micro/10.1099/mic.0.27899-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error