1887

Abstract

A key event in cytokinesis in bacteria is the assembly of the essential division protein FtsZ into ring-like structures at the nascent division site. FtsZ is the prokaryotic homologue of tubulin, and is found in nearly all bacteria. , FtsZ polymerizes in the presence of GTP to form higher-ordered polymers. FtsZ consists of two domains, with the GTP-binding site located in the N-terminal domain. The less-conserved C-terminal domain contains residues important for GTP hydrolysis, but its overall function is still unclear. This paper reports the development of a simple strategy to generate mutations in the essential division gene . Nine novel and viable mutants of are described. Eight of the mutations would affect the C-terminus of FtsZ. The collection of mutants exhibits a range of morphological phenotypes, ranging from normal to highly filamentous cells; some produce minicells, or divide in a twisted configuration; one mutation has a temperature-sensitive effect specifically impairing sporulation. The sites of the amino acid changes generated by the mutations could be informative about FtsZ function and its protein–protein interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27899-0
2005-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512053.html?itemId=/content/journal/micro/10.1099/mic.0.27899-0&mimeType=html&fmt=ahah

References

  1. Addinall, S. G. & Lutkenhaus, J. ( 1996; ). FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 22, 231–237.[CrossRef]
    [Google Scholar]
  2. Anagnostopoulos, C. & Spizizen, C. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741–746.
    [Google Scholar]
  3. Barak, I. & Youngman, P. ( 1996; ). SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J Bacteriol 178, 4984–4989.
    [Google Scholar]
  4. Beall, B. & Lutkenhaus, J. ( 1992; ). Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J Bacteriol 174, 2398–2403.
    [Google Scholar]
  5. Beall, B., Lowe, M. & Lutkenhaus, J. ( 1988; ). Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J Bacteriol 170, 4855–4864.
    [Google Scholar]
  6. Ben-Yehuda, S. & Losick, R. ( 2002; ). Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266.[CrossRef]
    [Google Scholar]
  7. Bi, E. & Lutkenhaus, J. ( 1990; ). Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (SfiA). J Bacteriol 172, 5602–5609.
    [Google Scholar]
  8. Bi, E. & Lutkenhaus, J. ( 1992; ). Isolation and characterization of ftsZ alleles that affect septal morphology. J Bacteriol 174, 5414–5423.
    [Google Scholar]
  9. Bramhill, D. & Thompson, C. M. ( 1994; ). GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A 91, 5813–5817.[CrossRef]
    [Google Scholar]
  10. Daniel, R. A. & Errington, J. ( 2000; ). Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 36, 278–289.[CrossRef]
    [Google Scholar]
  11. Daniel, R. A., Harry, E. J. & Errington, J. ( 2000; ). Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35, 299–311.[CrossRef]
    [Google Scholar]
  12. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. ( 1996; ). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93, 519–523.[CrossRef]
    [Google Scholar]
  13. Errington, J. ( 1984; ). Efficient Bacillus subtilis cloning system using bacteriophage vector π105J9. J Gen Microbiol 130, 2615–2628.
    [Google Scholar]
  14. Errington, J. ( 2003; ). Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1, 117–126.[CrossRef]
    [Google Scholar]
  15. Errington, J. & Mandelstam, J. ( 1986; ). Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIA in spo mutants of Bacillus subtilis. J Gen Microbiol 132, 2967–2976.
    [Google Scholar]
  16. Errington, J., Daniel, R. A. & Scheffers, D. J. ( 2003; ). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67, 52–65.[CrossRef]
    [Google Scholar]
  17. Feucht, A., Magnin, T., Yudkin, M. D. & Errington, J. ( 1996; ). Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev 10, 794–803.[CrossRef]
    [Google Scholar]
  18. Feucht, A., Daniel, R. A. & Errington, J. ( 1999; ). Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol Microbiol 33, 1015–1026.[CrossRef]
    [Google Scholar]
  19. Feucht, A., Lucet, I., Yudkin, M. D. & Errington, J. ( 2001; ). Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40, 115–125.[CrossRef]
    [Google Scholar]
  20. Feucht, A., Abbotts, L. & Errington, J. ( 2002; ). The cell differentiation protein SpoIIE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. Mol Microbiol 45, 1119–1130.[CrossRef]
    [Google Scholar]
  21. Gueiros-Filho, F. J. & Losick, R. ( 2002; ). A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16, 2544–2556.[CrossRef]
    [Google Scholar]
  22. Haeusser, D. P., Schwartz, R. L., Smith, A. M., Oates, M. E. & Levin, P. A. ( 2004; ). EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 52, 801–814.[CrossRef]
    [Google Scholar]
  23. Jenkinson, H. F. ( 1983; ). Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol 129, 1945–1958.
    [Google Scholar]
  24. Katis, V. L., Wake, R. G. & Harry, E. J. ( 2000; ). Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J Bacteriol 182, 3607–3611.[CrossRef]
    [Google Scholar]
  25. Kemp, J. T., Driks, A. & Losick, R. ( 2002; ). FtsA mutants of Bacillus subtilis impaired in sporulation. J Bacteriol 184, 3856–3863.[CrossRef]
    [Google Scholar]
  26. Khvorova, A., Zhang, L., Higgins, M. L. & Piggot, P. J. ( 1998; ). The spoIIE locus is involved in the Spo0A-dependent switch in the location of FtsZ rings in Bacillus subtilis. J Bacteriol 180, 1256–1260.
    [Google Scholar]
  27. King, N., Dreesen, O., Stragier, P., Pogliano, K. & Losick, R. ( 1999; ). Septation, dephosphorylation, and the activation of σ F during sporulation in Bacillus subtilis. Genes Dev 13, 1156–1167.[CrossRef]
    [Google Scholar]
  28. Levin, P. A., Shim, J. J. & Grossman, A. D. ( 1998; ). Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J Bacteriol 180, 6048–6051.
    [Google Scholar]
  29. Lewis, P. J. & Errington, J. ( 1996; ). Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142, 733–740.[CrossRef]
    [Google Scholar]
  30. Low, H. H., Moncrieffe, M. C. & Lowe, J. ( 2004; ). The crystal structure of ZapA and its modulation of FtsZ polymerization. J Mol Biol 341, 839–852.[CrossRef]
    [Google Scholar]
  31. Lowe, J. & Amos, L. A. ( 1998; ). Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206.[CrossRef]
    [Google Scholar]
  32. Lowe, J. & Amos, L. A. ( 1999; ). Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18, 2364–2371.[CrossRef]
    [Google Scholar]
  33. Lucet, I., Feucht, A., Yudkin, M. D. & Errington, J. ( 2000; ). Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J 19, 1467–1475.[CrossRef]
    [Google Scholar]
  34. Ma, X. & Margolin, W. ( 1999; ). Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181, 7531–7544.
    [Google Scholar]
  35. Marston, A. L. & Errington, J. ( 1999; ). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33, 84–96.[CrossRef]
    [Google Scholar]
  36. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. ( 1998; ). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12, 3419–3430.[CrossRef]
    [Google Scholar]
  37. Meissner, P. S., Sisk, W. P. & Berman, M. L. ( 1987; ). Bacteriophage λ cloning system for the construction of directional cDNA libraries. Proc Natl Acad Sci U S A 84, 4171–4175.[CrossRef]
    [Google Scholar]
  38. Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J. & Somers, W. S. ( 2000; ). The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19, 3179–3191.[CrossRef]
    [Google Scholar]
  39. Mukherjee, A. & Lutkenhaus, J. ( 1994; ). Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176, 2754–2758.
    [Google Scholar]
  40. Mukherjee, A. & Lutkenhaus, J. ( 1998; ). Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17, 462–469.[CrossRef]
    [Google Scholar]
  41. Nogales, E., Wolf, S. G. & Downing, K. H. ( 1998; ). Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203.[CrossRef]
    [Google Scholar]
  42. Palacios, P., Vicente, M. & Sanchez, M. ( 1996; ). Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol Microbiol 20, 1093–1098.[CrossRef]
    [Google Scholar]
  43. Partridge, S. R. & Errington, J. ( 1993; ). The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8, 945–955.[CrossRef]
    [Google Scholar]
  44. Pogliano, K., Harry, E. & Losick, R. ( 1995; ). Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol Microbiol 18, 459–470.[CrossRef]
    [Google Scholar]
  45. Resnekov, O., Alper, S. & Losick, R. ( 1996; ). Subcellular localization of proteins governing the proteolytic activation of a developmental transcription factor in Bacillus subtilis. Genes Cells 1, 529–542.[CrossRef]
    [Google Scholar]
  46. Romberg, L. & Levin, P. A. ( 2003; ). Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57, 125–154.[CrossRef]
    [Google Scholar]
  47. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Scheffers, D. J., de Wit, J. G., den Blaauwen, T. & Driessen, A. J. ( 2002; ). GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41, 521–529.[CrossRef]
    [Google Scholar]
  49. Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. ( 1998; ). Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180, 547–555.
    [Google Scholar]
  50. Sievers, J., Raether, B., Perego, M. & Errington, J. ( 2002; ). Characterization of the parB-like yyaA gene of Bacillus subtilis. J Bacteriol 184, 1102–1111.[CrossRef]
    [Google Scholar]
  51. Sterlini, J. M. & Mandelstam, J. ( 1969; ). Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113, 29–37.
    [Google Scholar]
  52. Stevens, C. M., Daniel, R., Illing, N. & Errington, J. ( 1992; ). Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol 174, 586–594.
    [Google Scholar]
  53. Stricker, J. & Erickson, H. P. ( 2003; ). In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 185, 4796–4805.[CrossRef]
    [Google Scholar]
  54. Thomaides, H. B., Freeman, M., El Karoui, M. & Errington, J. ( 2001; ). Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15, 1662–1673.[CrossRef]
    [Google Scholar]
  55. Vaughan, S., Wickstead, B., Gull, K. & Addinall, S. G. ( 2004; ). Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58, 19–29.[CrossRef]
    [Google Scholar]
  56. Wang, X., Huang, J., Mukherjee, A., Cao, C. & Lutkenhaus, J. ( 1997; ). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179, 5551–5559.
    [Google Scholar]
  57. Ward, J. E., Jr & Lutkenhaus, J. ( 1985; ). Overproduction of FtsZ induces minicell formation in E. coli. Cell 42, 941–949.[CrossRef]
    [Google Scholar]
  58. Weart, R. B. & Levin, P. A. ( 2003; ). Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185, 2826–2834.[CrossRef]
    [Google Scholar]
  59. Wu, L. J. & Errington, J. ( 2004; ). Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925.[CrossRef]
    [Google Scholar]
  60. Young, M. ( 1976; ). Use of temperature-sensitive mutants to study gene expression during sporulation in Bacillus subtilis. J Bacteriol 126, 928–936.
    [Google Scholar]
  61. Yu, X. C. & Margolin, W. ( 1997; ). Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16, 5455–5463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27899-0
Loading
/content/journal/micro/10.1099/mic.0.27899-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error