1887

Abstract

Oxylipins called psi factors have been shown to alter the ratio of asexual to sexual sporulation in the filamentous fungus . Analysis of the genome has led to the identification of three fatty acid oxygenases (PpoA, PpoB and PpoC) predicted to produce psi factors. Here, it is reported that deletion of ) reduced production of the oleic-acid-derived oxylipin psiB and increased the ratio of asexual to sexual spore development. Generation of the triple mutant ΔΔΔ resulted in a strain deficient in producing oleic- and linoleic-acid-derived 8′-hydroxy psi factor and caused increased and mis-scheduled activation of sexual development. Changes in asexual to sexual spore development were positively correlated to alterations in the expression of and , respectively. PpoB and/or its products antagonistically mediate the expression levels of and , thus revealing regulatory feedback loops among these three genes. Phylogenetic analyses showed that genes are present in both saprophytic and pathogenic Ascomycetes and Basidiomycetes, suggesting a conserved role for Ppo enzymes in the life cycle of fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27880-0
2005-06-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511809.html?itemId=/content/journal/micro/10.1099/mic.0.27880-0&mimeType=html&fmt=ahah

References

  1. Abell B. M., Holbrook L. A., Abenes M., Murphy D. J., Hills M. J., Moloney M. M. 1997; Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell9:1481–1493[CrossRef]
    [Google Scholar]
  2. Adams T. H., Boylan M. T., Timberlake W. E. 1988; brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell54:353–362[CrossRef]
    [Google Scholar]
  3. Adams T. H., Wieser J. K., Yu J. H. 1998; Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev62:35–54
    [Google Scholar]
  4. Agrios G. N. 1997; Plant Pathology, 4th edn. San Diego, CA: Academic Press;
    [Google Scholar]
  5. Alexopoulos C. J., Mims C. W., Blackwell M. 1996; Introductory Mycology, 4th edn. Chichester: Wiley;
  6. Blee E. 2002; Impact of phyto-oxylipins in plant defense. Trends Plant Sci7:315–322[CrossRef]
    [Google Scholar]
  7. Browse J., McCourt P. J., Somerville C. R. 1986; Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem152:141–145[CrossRef]
    [Google Scholar]
  8. Burow G. B., Gardner H. W., Keller N. P. 2000; A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol Biol42:689–701[CrossRef]
    [Google Scholar]
  9. Calvo A. M., Hinze L. L., Gardner H. W., Keller N. P. 1999; Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol65:3668–3673
    [Google Scholar]
  10. Calvo A. M., Gardner H. W., Keller N. P. 2001; Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem276:25766–25774[CrossRef]
    [Google Scholar]
  11. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P. 2002; Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev66:447–459[CrossRef]
    [Google Scholar]
  12. Champe S. P., el-Zayat A. A. 1989; Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol171:3982–3988
    [Google Scholar]
  13. Champe S. P., Kurtz M. B., Yager L. N., Butnick N. Z., Axelrod D. E. 1981; Spore formation in Aspergillus nidulans: competence and other developmental processes. In The Fungal Spores: Morphogenic Controls pp255–276 Edited by Hohl H. R., Turian G.. New York: Academic Press;
    [Google Scholar]
  14. Champe S. P., Rao P., Chang A. 1987; An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol133:1383–1387
    [Google Scholar]
  15. Champe S. P., Nagle D. L., Yager L. N. 1994; Sexual sporulation. Prog Ind Microbiol29:429–454
    [Google Scholar]
  16. Chen J. C., Tzen J. T. 2001; An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies. Plant Cell Physiol42:1245–1252[CrossRef]
    [Google Scholar]
  17. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins J. D. 2003; Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res31:3497–3500[CrossRef]
    [Google Scholar]
  18. Farmer E. E., Almeras E., Krishnamurthy V. 2003; Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol6:372–378[CrossRef]
    [Google Scholar]
  19. Fox S. R., Akpinar A., Prabhune A. A., Friend J., Ratledge C. 2000; The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-hydroxy-9Z,12Z-octadecadienoic acid. Lipids35:23–30[CrossRef]
    [Google Scholar]
  20. Funk C. D. 2001; Prostaglandins and leukotrienes: advances in eicosanoid biology. Science294:1871–1875[CrossRef]
    [Google Scholar]
  21. Goodrich-Tanrikulu M., Howe K., Stafford A., Nelson M. A. 1998; Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology144:1713–1720[CrossRef]
    [Google Scholar]
  22. Han K.-H., Han K. Y., Yu J. H., Chae K. S., Jahng K. Y., Han D. M. 2001; The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol41:299–309[CrossRef]
    [Google Scholar]
  23. Herman R. P. 1998; Oxylipin production and action in fungi and related organisms. In Eicosanoids and Related Compounds in Plants and Animals pp115–130 Edited by Rowley A. F., Kuhn H., Schewe T.. Princeton, NJ: Princeton University Press;
    [Google Scholar]
  24. Hornsten L., Su C., Osbourn A. E., Garosi P., Hellman U., Wernstedt C., Oliw E. H. 1999; Cloning of linoleate diol synthase reveals homology with prostaglandin H synthases. J Biol Chem274:28219–28224[CrossRef]
    [Google Scholar]
  25. Howe G. A., Schilmiller A. L. 2002; Oxylipin metabolism in response to stress. Curr Opin Plant Biol5:230–236[CrossRef]
    [Google Scholar]
  26. Huber S. M., Lottspeich F., Kamper J. 2002; A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis. Mol Genet Genomics267:757–771[CrossRef]
    [Google Scholar]
  27. Jensen E. C., Ogg C., Nickerson K. W. 1992; Lipoxygenase inhibitors shift the yeast/mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol58:2505–2508
    [Google Scholar]
  28. Kerwin J. L., Simmons C. A., Washino R. K. 1986; Eicosanoid regulation of oosporogenesis by Lagenidium giganteum. Prostaglandins Leukot Med23:173–178[CrossRef]
    [Google Scholar]
  29. Kim H., Han K., Kim K., Han D., Jahng K., Chae K. 2002; The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol37:72–80[CrossRef]
    [Google Scholar]
  30. Kock J. L., Venter P., Linke D., Schewe T., Nigam S. 1998; Biological dynamics and distribution of 3-hydroxy fatty acids in the yeast Dipodascopsis uninucleata as investigated by immunofluorescence microscopy. Evidence for a putative regulatory role in the sexual reproductive cycle. FEBS Lett427:345–348[CrossRef]
    [Google Scholar]
  31. Kock J. L., Strauss C. J., Pohl C. H., Nigam S. 2003; The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins Other Lipid Mediat71:85–96[CrossRef]
    [Google Scholar]
  32. Lee B. S., Taylor J. W. 1990; Isolation of DNA from fungal mycelia and single spores. In PCR Protocols: a Guide to Methods and Applications pp282–287 Edited by Innis M. A., Gelfand D. H., Sninsky J. S., White T. J.. San Diego, CA: Academic Press;
    [Google Scholar]
  33. Mazur P., Meyers H. V., Nakanishi K. 1990; Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett31:3837–3840[CrossRef]
    [Google Scholar]
  34. Mazur P., Nakanishi K., El-Zayat A. A. E., Champe S. P. 1991; Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J Chem Soc Chem Commun20:1486–1487
    [Google Scholar]
  35. Noverr M. C., Erb-Downward J. R., Huffnagle G. B. 2003; Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev16:517–533[CrossRef]
    [Google Scholar]
  36. Nukima M. T., Sassa M., Ikeda M., Takahashi K. 1981; Linoleic acid enhances perithecial production in Neurospora crassa. Agric Biol Chem45:2371–2373[CrossRef]
    [Google Scholar]
  37. Osmani A. H., May G. S., Osmani S. A. 1999; The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J Biol Chem274:23565–23569[CrossRef]
    [Google Scholar]
  38. Pontecorvo G., Roper J. A., Hemmons L. M., MacDonald K. D., Bufton A. W. J. 1953; The genetics of Aspergillus nidulans. Adv Genet5:141–239
    [Google Scholar]
  39. Prade R. A., Timberlake W. E. 1993; The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J12:2439–2447
    [Google Scholar]
  40. Roeder P. E., Sargent M. L., Brody S. 1982; Circadian rhythms in Neurospora crassa: oscillations in fatty acids. Biochemistry21:4909–4916[CrossRef]
    [Google Scholar]
  41. Sambrook J., Russell D. W. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Strauss T., Botha A., Kock J. L., Paul I., Smith D. P., Linke D., Schewe T., Nigam S. 2000; Mapping the distribution of 3-hydroxylipins in the Mucorales using immunofluorescence microscopy. Antonie Van Leeuwenhoek78:39–42[CrossRef]
    [Google Scholar]
  43. Su C., Oliw E. H. 1996; Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein. J Biol Chem271:14112–14118[CrossRef]
    [Google Scholar]
  44. Tsitsigiannis D. I., Wilson R. A., Keller N. P. 2002; Lipid mediated signaling in the Aspergillus/seed interaction. In Biology of Plant–Microbe Interactions pp186–191 Edited by Leong S. A., Allen C., Triplet E. W.. St Paul, MN: International Society for Plant –Microbe Interactions;
    [Google Scholar]
  45. Tsitsigiannis D. I., Kowieski T. M., Zarnowski R., Keller N. P. 2004a; Lipogenic signals act as developmental regulators of spore balance in Aspergillus nidulans. Eukaryot Cell3:1398–1411[CrossRef]
    [Google Scholar]
  46. Tsitsigiannis D. I., Zarnowski R., Keller N. P. 2004b; The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem279:11344–11353[CrossRef]
    [Google Scholar]
  47. Wieser J., Adams T. H. 1995; flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev9:491–502[CrossRef]
    [Google Scholar]
  48. Wilson R. A., Calvo A. M., Chang P.-K., Keller N. P. 2004; Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus/seed interaction. Microbiology150:2881–2888[CrossRef]
    [Google Scholar]
  49. Yelton M. M., Hamer J. E., Timberlake W. E. 1984; Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A81:1470–1474[CrossRef]
    [Google Scholar]
  50. Zarnowski R., Suzuki Y., Esumi Y., Pietr S. J. 2000; 5-n-Alkylresorcinols from the green microalga. Apatococcus constipatus Phytochemistry55:975–977[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27880-0
Loading
/content/journal/micro/10.1099/mic.0.27880-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error