1887

Abstract

A gene encoding a putative peptidoglycan hydrolase was identified by sequence similarity searching in the 630 genome sequence, and the corresponding protein, named Acd (autolysin of ) was expressed in . The deduced amino acid sequence of Acd shows a modular structure with two main domains: an N-terminal domain exhibiting repeated sequences and a C-terminal catalytic domain. The C-terminal domain exhibits sequence similarity with the glucosaminidase domains of Atl and LytD autolysins. Purified recombinant Acd produced in was confirmed to be a cell-wall hydrolase with lytic activity on the peptidoglycan of several Gram-positive bacteria, including . The hydrolytic specificity of Acd was studied by RP-HPLC analysis and MALDI-TOF MS using cell-wall extracts. Muropeptides generated by Acd hydrolysis demonstrated that Acd hydrolyses peptidoglycan bonds between -acetylglucosamine and -acetylmuramic acid, confirming that Acd is an -acetylglucosaminidase. The transcription of the gene increased during vegetative cellular growth of 630. The sequence of the gene appears highly conserved in strains. Regarding deduced amino acid sequences, the C-terminal domain with enzymic function appears to be the most conserved of the two main domains. Acd is the first known autolysin involved in peptidoglycan hydrolysis of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27878-0
2005-07-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512343.html?itemId=/content/journal/micro/10.1099/mic.0.27878-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Tang, Y. J., Henderson, J. P., Rodloff, A. C., Silva, J., Jr & Cohen, S. H. ( 2001; ). Electroporation of DNA sequences from the pathogenicity locus (PaLoc) of toxigenic Clostridium difficile into a non-toxigenic strain. Mol Cell Probes 15, 301–306.[CrossRef]
    [Google Scholar]
  2. Allignet, J., Aubert, S., Dyke, K. G. & El Solh, N. ( 2001; ). Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect Immun 69, 712–718.[CrossRef]
    [Google Scholar]
  3. Allignet, J., England, P., Old, I. & El Solh, N. ( 2002; ). Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 213, 193–197.[CrossRef]
    [Google Scholar]
  4. Atrih, A., Bacher, G., Allmaier, G., Williamson, M. P. & Foster, S. J. ( 1999; ). Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181, 3956–3966.
    [Google Scholar]
  5. Bateman, A. & Bycroft, M. ( 2000; ). The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299, 1113–1119.[CrossRef]
    [Google Scholar]
  6. Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G. & Cossart, P. ( 1997; ). InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25, 285–294.[CrossRef]
    [Google Scholar]
  7. Buist, G., Kok, J., Leenhouts, K. J., Dabrowska, M., Venema, G. & Haandrikman, A. J. ( 1995; ). Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177, 1554–1563.
    [Google Scholar]
  8. Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L. & Cossart, P. ( 2002; ). Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 10, 238–245.[CrossRef]
    [Google Scholar]
  9. Canvin, J. R., Marvin, A. P., Sivakumaran, M., Paton, J. C., Boulnois, G. J., Andrew, P. W. & Mitchell, T. J. ( 1995; ). The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect Dis 172, 119–123.[CrossRef]
    [Google Scholar]
  10. Carroll, S. A., Hain, T., Technow, U., Darji, A., Pashalidis, P., Joseph, S. W. & Chakraborty, T. ( 2003; ). Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol 185, 6801–6808.[CrossRef]
    [Google Scholar]
  11. Chen, Y., Miyata, S., Makino, S. & Moriyama, R. ( 1997; ). Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol 179, 3181–3187.
    [Google Scholar]
  12. Comfort, D. & Clubb, R. T. ( 2004; ). A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 72, 2710–2722.[CrossRef]
    [Google Scholar]
  13. Dhalluin, A., Lemée, L., Pestel-Caron, M., Mory, F., Leluan, G., Lemeland, J. F. & Pons, J. L. ( 2003; ). Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase (tpi) gene. Syst Appl Microbiol 26, 90–96.[CrossRef]
    [Google Scholar]
  14. Diaz, E., Lopez, R. & Garcia, J. L. ( 1992; ). Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae. J Bacteriol 174, 5508–5515.
    [Google Scholar]
  15. Fischetti, V. A., Pancholi, V. & Schneewind, O. ( 1990; ). Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 4, 1603–1605.[CrossRef]
    [Google Scholar]
  16. Foster, S. J. ( 1991; ). Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137, 1987–1998.[CrossRef]
    [Google Scholar]
  17. George, W. L. ( 1984; ). Antimicrobial agent associated colitis and diarrhea: historical background and clinical aspects. Rev Infect Dis 6, 208–213.[CrossRef]
    [Google Scholar]
  18. Ghuysen, J. M., Tipper, D. J. & Strominger, J. L. ( 1966; ). Enzymes that degrade bacterial cell walls. Methods Enzymol 8, 685–699.
    [Google Scholar]
  19. Groicher, K. H., Firek, B. A., Fujimoto, D. F. & Bayles, K. W. ( 2000; ). The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182, 1794–1801.[CrossRef]
    [Google Scholar]
  20. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. ( 1997; ). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  21. Hell, W., Meyer, H. G. & Gatermann, S. G. ( 1998; ). Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29, 871–881.[CrossRef]
    [Google Scholar]
  22. Horsburgh, G. J., Atrih, A., Williamson, M. P. & Foster, S. J. ( 2003; ). LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry 42, 257–264.[CrossRef]
    [Google Scholar]
  23. Huard, C., Miranda, G., Wessner, F., Bolotin, A., Hansen, J., Foster, S. J. & Chapot-Chartier, M. P. ( 2003; ). Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. Microbiology 149, 695–705.[CrossRef]
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Leclerc, D. & Asselin, A. ( 1989; ). Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol 35, 749–753.[CrossRef]
    [Google Scholar]
  26. Lemée, L., Dhalluin, A., Pestel-Caron, M., Lemeland, J. F. & Pons, J. L. ( 2004a; ). Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol 42, 2609–2617.[CrossRef]
    [Google Scholar]
  27. Lemée, L., Dhalluin, A., Testelin, S., Mattrat, M. A., Maillard, K., Lemeland, J. F. & Pons, J. L. ( 2004b; ). Multiplex PCR targeting tpi (triosephosphate isomerase), tcdA (toxin A) and tcdB (toxin B) genes for toxigenic culture of C. difficile. J Clin Microbiol 42, 5710–5714.[CrossRef]
    [Google Scholar]
  28. Lenz, L. L., Mohammadi, S., Geissler, A. & Portnoy, D. A. ( 2003; ). SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100, 12432–12437.[CrossRef]
    [Google Scholar]
  29. Liyanage, H., Kashket, S., Young, M. & Kashket, E. R. ( 2001; ). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Appl Environ Microbiol 67, 2004–2010.[CrossRef]
    [Google Scholar]
  30. Lyerly, D. M., Krivan, H. C. & Wilkins, T. D. ( 1988; ). Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1, 1–18.
    [Google Scholar]
  31. Milohanic, E., Jonquieres, R., Cossart, P., Berche, P. & Gaillard, J. L. ( 2001; ). The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 39, 1212–1224.[CrossRef]
    [Google Scholar]
  32. Miyata, S., Moriyama, R., Miyahara, N. & Makino, S. ( 1995; ). A gene (sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141, 2643–2650.[CrossRef]
    [Google Scholar]
  33. Moreillon, P., Markiewicz, Z., Nachman, S. & Tomasz, A. ( 1990; ). Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother 34, 33–39.[CrossRef]
    [Google Scholar]
  34. Mullany, P., Wilks, M., Puckey, L. & Tabaqchali, S. ( 1994; ). Gene cloning in Clostridium difficile using Tn916 as a shuttle conjugative transposon. Plasmid 31, 320–323.[CrossRef]
    [Google Scholar]
  35. Myhre, A. E., Stuestol, J. F., Dahle, M. K., Overland, G., Thiemermann, C., Foster, S. J., Lilleaasen, P., Aasen, A. O. & Wang, J. E. ( 2004; ). Organ injury and cytokine release caused by peptidoglycan are dependent on the structural integrity of the glycan chain. Infect Immun 72, 1311–1317.[CrossRef]
    [Google Scholar]
  36. Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y. M., Suginaka, H. & Tomasz, A. ( 1995; ). A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92, 285–289.[CrossRef]
    [Google Scholar]
  37. Purdy, D., O'Keeffe, T. A., Elmore, M., Herbert, M., McLeod, A., Bokori-Brown, M., Ostrowski, A. & Minton, N. P. ( 2002; ). Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 46, 439–452.[CrossRef]
    [Google Scholar]
  38. Rashid, M. H., Mori, M. & Sekiguchi, J. ( 1995; ). Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141, 2391–2404.[CrossRef]
    [Google Scholar]
  39. Roberts, A. P., Hennequin, C., Elmore, M., Collignon, A., Karjalainen, T., Minton, N. & Mullany, P. ( 2003; ). Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J Microbiol Methods 55, 617–624.[CrossRef]
    [Google Scholar]
  40. Shockman, G. D. & Holtje, J.-V. ( 1994; ). Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall, pp. 131–166. Edited by J.-M. Ghuysen & R. Hakenbeck. Amsterdam: Elsevier.
  41. Smith, T. J., Blackman, S. A. & Foster, S. J. ( 2000; ). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146, 249–262.
    [Google Scholar]
  42. Tan, K. S., Wee, B. Y. & Song, K. P. ( 2001; ). Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 50, 613–619.
    [Google Scholar]
  43. Tjalsma, H., Antelmann, H., Jongbloed, J. D. & 11 other authors ( 2004; ). Proteomics of protein secretion by Bacillus subtilis: separating the ‘secrets' of the secretome. Microbiol Mol Biol Rev 68, 207–233.[CrossRef]
    [Google Scholar]
  44. Tomasz, A. ( 2000; ). The staphylococcal cell wall. In Gram-Positive Pathogens, pp. 351–360. Edited by V. A. Fischetti. Washington, DC: American Society for Microbiology.
  45. Ward, J. B. & Williamson, R. ( 1984; ). Bacterial autolysins: specificity and function. In Microbial Cell Wall Synthesis and Autolysis, pp. 159–166. Edited by C. Nombela. Amsterdam: Elsevier.
  46. Wren, B. W. ( 1991; ). A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5, 797–803.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27878-0
Loading
/content/journal/micro/10.1099/mic.0.27878-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error