1887

Abstract

A gene encoding a putative peptidoglycan hydrolase was identified by sequence similarity searching in the 630 genome sequence, and the corresponding protein, named Acd (autolysin of ) was expressed in . The deduced amino acid sequence of Acd shows a modular structure with two main domains: an N-terminal domain exhibiting repeated sequences and a C-terminal catalytic domain. The C-terminal domain exhibits sequence similarity with the glucosaminidase domains of Atl and LytD autolysins. Purified recombinant Acd produced in was confirmed to be a cell-wall hydrolase with lytic activity on the peptidoglycan of several Gram-positive bacteria, including . The hydrolytic specificity of Acd was studied by RP-HPLC analysis and MALDI-TOF MS using cell-wall extracts. Muropeptides generated by Acd hydrolysis demonstrated that Acd hydrolyses peptidoglycan bonds between -acetylglucosamine and -acetylmuramic acid, confirming that Acd is an -acetylglucosaminidase. The transcription of the gene increased during vegetative cellular growth of 630. The sequence of the gene appears highly conserved in strains. Regarding deduced amino acid sequences, the C-terminal domain with enzymic function appears to be the most conserved of the two main domains. Acd is the first known autolysin involved in peptidoglycan hydrolysis of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27878-0
2005-07-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512343.html?itemId=/content/journal/micro/10.1099/mic.0.27878-0&mimeType=html&fmt=ahah

References

  1. Ackermann G., Tang Y. J., Henderson J. P., Rodloff A. C., Silva J. Jr, Cohen S. H. 2001; Electroporation of DNA sequences from the pathogenicity locus (PaLoc) of toxigenic Clostridium difficile into a non-toxigenic strain. Mol Cell Probes15:301–306[CrossRef]
    [Google Scholar]
  2. Allignet J., Aubert S., Dyke K. G., El Solh N. 2001; Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect Immun69:712–718[CrossRef]
    [Google Scholar]
  3. Allignet J., England P., Old I., El Solh N. 2002; Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett213:193–197[CrossRef]
    [Google Scholar]
  4. Atrih A., Bacher G., Allmaier G., Williamson M. P., Foster S. J. 1999; Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol181:3956–3966
    [Google Scholar]
  5. Bateman A., Bycroft M. 2000; The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD. J Mol Biol299:1113–1119[CrossRef]
    [Google Scholar]
  6. Braun L., Dramsi S., Dehoux P., Bierne H., Lindahl G., Cossart P. 1997; InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol25:285–294[CrossRef]
    [Google Scholar]
  7. Buist G., Kok J., Leenhouts K. J., Dabrowska M., Venema G., Haandrikman A. J. 1995; Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis , a muramidase needed for cell separation. J Bacteriol177:1554–1563
    [Google Scholar]
  8. Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P. 2002; Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol10:238–245[CrossRef]
    [Google Scholar]
  9. Canvin J. R., Marvin A. P., Sivakumaran M., Paton J. C., Boulnois G. J., Andrew P. W., Mitchell T. J. 1995; The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect Dis172:119–123[CrossRef]
    [Google Scholar]
  10. Carroll S. A., Hain T., Technow U., Darji A., Pashalidis P., Joseph S. W., Chakraborty T. 2003; Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes , a muramidase needed for cell separation. J Bacteriol185:6801–6808[CrossRef]
    [Google Scholar]
  11. Chen Y., Miyata S., Makino S., Moriyama R. 1997; Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol179:3181–3187
    [Google Scholar]
  12. Comfort D., Clubb R. T. 2004; A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun72:2710–2722[CrossRef]
    [Google Scholar]
  13. Dhalluin A., Mory F., Leluan G., Lemeland J. F., Pons J. L, Lemée L., Pestel-Caron M.. 2003; Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase ( tpi ) gene. Syst Appl Microbiol26:90–96[CrossRef]
    [Google Scholar]
  14. Diaz E., Lopez R., Garcia J. L. 1992; Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae . J Bacteriol174:5508–5515
    [Google Scholar]
  15. Fischetti V. A., Pancholi V., Schneewind O. 1990; Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol4:1603–1605[CrossRef]
    [Google Scholar]
  16. Foster S. J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol137:1987–1998[CrossRef]
    [Google Scholar]
  17. George W. L. 1984; Antimicrobial agent associated colitis and diarrhea: historical background and clinical aspects. Rev Infect Dis6:208–213[CrossRef]
    [Google Scholar]
  18. Ghuysen J. M., Tipper D. J., Strominger J. L. 1966; Enzymes that degrade bacterial cell walls. Methods Enzymol8:685–699
    [Google Scholar]
  19. Groicher K. H., Firek B. A., Fujimoto D. F., Bayles K. W. 2000; The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol182:1794–1801[CrossRef]
    [Google Scholar]
  20. Heilmann C., Hussain M., Peters G., Gotz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol24:1013–1024[CrossRef]
    [Google Scholar]
  21. Hell W., Meyer H. G., Gatermann S. G. 1998; Cloning of aas , a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol29:871–881[CrossRef]
    [Google Scholar]
  22. Horsburgh G. J., Atrih A., Williamson M. P., Foster S. J. 2003; LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry42:257–264[CrossRef]
    [Google Scholar]
  23. Huard C., Miranda G., Wessner F., Bolotin A., Hansen J., Foster S. J., Chapot-Chartier M. P. 2003; Characterization of AcmB, an N -acetylglucosaminidase autolysin from Lactococcus lactis . Microbiology149:695–705[CrossRef]
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  25. Leclerc D., Asselin A. 1989; Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol35:749–753[CrossRef]
    [Google Scholar]
  26. Lemée L., Dhalluin A., Pestel-Caron M., Lemeland J. F., Pons J. L. 2004a; Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol42:2609–2617[CrossRef]
    [Google Scholar]
  27. Lemée L., Dhalluin A., Testelin S., Mattrat M. A., Maillard K., Lemeland J. F., Pons J. L. 2004b; Multiplex PCR targeting tpi (triosephosphate isomerase), tcdA (toxin A) and tcdB (toxin B) genes for toxigenic culture of C. difficile . J Clin Microbiol42:5710–5714[CrossRef]
    [Google Scholar]
  28. Lenz L. L., Mohammadi S., Geissler A., Portnoy D. A. 2003; SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A100:12432–12437[CrossRef]
    [Google Scholar]
  29. Liyanage H., Kashket S., Young M., Kashket E. R. 2001; Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Appl Environ Microbiol67:2004–2010[CrossRef]
    [Google Scholar]
  30. Lyerly D. M., Krivan H. C., Wilkins T. D. 1988; Clostridium difficile : its disease and toxins. Clin Microbiol Rev1:1–18
    [Google Scholar]
  31. Milohanic E., Jonquieres R., Cossart P., Berche P., Gaillard J. L. 2001; The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol39:1212–1224[CrossRef]
    [Google Scholar]
  32. Miyata S., Moriyama R., Miyahara N., Makino S. 1995; A gene ( sleC ) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology141:2643–2650[CrossRef]
    [Google Scholar]
  33. Moreillon P., Markiewicz Z., Nachman S., Tomasz A. 1990; Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother34:33–39[CrossRef]
    [Google Scholar]
  34. Mullany P., Wilks M., Puckey L., Tabaqchali S. 1994; Gene cloning in Clostridium difficile using Tn916 as a shuttle conjugative transposon. Plasmid31:320–323[CrossRef]
    [Google Scholar]
  35. Myhre A. E., Stuestol J. F., Dahle M. K., Overland G., Thiemermann C., Foster S. J., Lilleaasen P., Aasen A. O., Wang J. E. 2004; Organ injury and cytokine release caused by peptidoglycan are dependent on the structural integrity of the glycan chain. Infect Immun72:1311–1317[CrossRef]
    [Google Scholar]
  36. Oshida T., Sugai M., Komatsuzawa H., Hong Y. M., Suginaka H., Tomasz A. 1995; A Staphylococcus aureus autolysin that has an N -acetylmuramoyl-l-alanine amidase domain and an endo- β - N -acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A92:285–289[CrossRef]
    [Google Scholar]
  37. Purdy D., O'Keeffe T. A., Elmore M., Herbert M., McLeod A., Bokori-Brown M., Ostrowski A., Minton N. P. 2002; Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol46:439–452[CrossRef]
    [Google Scholar]
  38. Rashid M. H., Mori M., Sekiguchi J. 1995; Glucosaminidase of Bacillus subtilis : cloning, regulation, primary structure and biochemical characterization. Microbiology141:2391–2404[CrossRef]
    [Google Scholar]
  39. Roberts A. P., Hennequin C., Elmore M., Collignon A., Karjalainen T., Minton N., Mullany P. 2003; Development of an integrative vector for the expression of antisense RNA in Clostridium difficile . J Microbiol Methods55:617–624[CrossRef]
    [Google Scholar]
  40. Shockman G. D., Holtje J.-V. 1994; Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall pp131–166 Edited by Ghuysen J.-M., Hakenbeck R.. Amsterdam: Elsevier;
    [Google Scholar]
  41. Smith T. J., Blackman S. A., Foster S. J. 2000; Autolysins of Bacillus subtilis : multiple enzymes with multiple functions. Microbiology146:249–262
    [Google Scholar]
  42. Tan K. S., Wee B. Y., Song K. P. 2001; Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile . J Med Microbiol50:613–619
    [Google Scholar]
  43. Tjalsma H., Antelmann H., Jongbloed J. D.. 11 other authors 2004; Proteomics of protein secretion by Bacillus subtilis : separating the ‘secrets' of the secretome. Microbiol Mol Biol Rev68:207–233[CrossRef]
    [Google Scholar]
  44. Tomasz A. 2000; The staphylococcal cell wall. In Gram-Positive Pathogens pp351–360 Edited by Fischetti V. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Ward J. B., Williamson R. 1984; Bacterial autolysins: specificity and function. In Microbial Cell Wall Synthesis and Autolysis pp159–166 Edited by Nombela C.. Amsterdam: Elsevier;
    [Google Scholar]
  46. Wren B. W. 1991; A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol5:797–803[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27878-0
Loading
/content/journal/micro/10.1099/mic.0.27878-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error