Regulation of two highly similar genes, and , in a 10 kb chromosomal duplication in Free

Abstract

The Fe(III)-reducing micro-organism requires an outer-membrane -type cytochrome, OmcB, for Fe(III) reduction, but a related cytochrome, OmcC, which is 73 % identical to OmcB, is not required. The and genes are part of a tandem chromosomal duplication consisting of two repeated clusters of four genes. The 2·7 kb sequences preceding and are identical with the exception of a single base pair change. Studies that combined genetic, Northern blotting and primer extension analyses demonstrated that both and are transcribed as monocistronic and polycistronic (--/) transcripts. All of the promoters for the various transcripts were found to be located within the 2·7 kb identical region upstream of and . The sequences of the promoter regions for the two monocistronic transcripts are identical and equidistant from the or start codons. The promoters for the two polycistronic transcripts, in contrast, are distinct. One is specific for transcription of -- and the other is associated with transcription of --. Studies with an RpoS-deficient mutant suggested that transcription from all four promoters is RpoS dependent under one or more growth conditions. Deletion of , a gene immediately upstream of -- that encodes a putative transcriptional regulator, significantly lowered the transcription when Fe(III) was the electron acceptor and partially inhibited Fe(III) reduction. In contrast, levels of transcripts were unaffected in the mutant. These results indicate that and operons represent a rare instance in which duplicated operons, located in tandem on the chromosome, have different transcriptional regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27870-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511761.html?itemId=/content/journal/micro/10.1099/mic.0.27870-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67 [CrossRef]
    [Google Scholar]
  2. Bond D. R., Lovley D. R. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555 [CrossRef]
    [Google Scholar]
  3. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  4. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  5. Childers S. E., Ciufo S., Lovley D. R. 2002; Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769 [CrossRef]
    [Google Scholar]
  6. Chin K.-J., Leang C., Lovley D. R, Esteve-Núñez A. 2004; Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Appl Environ Microbiol 70:5183–5189 [CrossRef]
    [Google Scholar]
  7. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  8. Grkovic S., Brown M. H., Skurray R. A. 2002; Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701 [CrossRef]
    [Google Scholar]
  9. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. 2nd, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  10. Leang C., Coppi M. V., Lovley D. R. 2003; OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction inGeobacter sulfurreducens. J Bacteriol 185:2096–2103 [CrossRef]
    [Google Scholar]
  11. Lloyd J. R., Leang C., Hodges Myerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R. 2003; Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161 [CrossRef]
    [Google Scholar]
  12. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  13. Lovley D. R. 2000; Fe(III) and Mn(IV) reduction. In Environmental Microbe-Metal Interactions pp 3–30 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Lovley D. R. 2002; Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter. OMICS 6:331–339 [CrossRef]
    [Google Scholar]
  15. Lovley D. R. 2003; Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44 [CrossRef]
    [Google Scholar]
  16. Lovley D. R., Philips E. J. 1986; Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  17. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  18. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286
    [Google Scholar]
  19. Marx C. J., Lidstrom M. E. 2001; Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075
    [Google Scholar]
  20. Methe B. A., Nelson K. E., Eisen J. A. & 31 other authors; 2003; Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  21. Murphy K. C., Campellone K. G., Poteete A. R. 2000; PCR-mediated gene replacement in Escherichia coli. Gene 246:321–330 [CrossRef]
    [Google Scholar]
  22. Nevin K. P., Lovley D. R. 2000; Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide byGeobacter metallireducens. Appl Environ Microbiol 66:2248–2251 [CrossRef]
    [Google Scholar]
  23. Nevin K. P., Lovley D. R. 2002a; Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159 [CrossRef]
    [Google Scholar]
  24. Nevin K. P., Lovley D. R. 2002b; Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction byGeothrix fermentans. Appl Environ Microbiol 68:2294–2299 [CrossRef]
    [Google Scholar]
  25. Nunez C., Adams L., Childers S., Lovley D. R. 2004; The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. J Bacteriol 186:5543–5546 [CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Smith P. K., Krohn R. I., Hermanson G. T. & 7 other authors; 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  28. Wagner R. 2000 Transcription Regulation in Prokaryotes Oxford: Oxford University Press;
    [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27870-0
Loading
/content/journal/micro/10.1099/mic.0.27870-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed