1887

Abstract

is the leading bacterial cause of human diarrhoeal disease in many parts of the world, including the USA. The ability of to invade the host intestinal epithelium is an important determinant of virulence. A common theme among pathogenic invasive micro-organisms is their ability to usurp the eukaryotic cell-signalling systems both to allow for invasion and to trigger disease pathogenesis. Ca is very important in a great variety of eukaryotic cell-signalling processes (e.g. calmodulin-activated enzymes, nuclear transcriptional upregulation, and cytoskeletal rearrangements). This study analyses the effects of Ca availability on invasion of human INT407 intestinal epithelial cells by strain 81-176. The ability of to invade INT407 cells was not blocked by chelation of any remaining extracellular Ca from host cells incubated in Ca-free, serum-free media. In contrast, invasion was markedly reduced either by chelating host intracellular Ca with 1,2-bis-(2-)ethane-,,′,′-tetraacetic acid acetoxymethyl ester (BAPTA, AM) or by blocking the release of Ca from intracellular stores with dantrolene or U73122. Moreover, Bay K8644, a plasma-membrane Ca-channel agonist, was observed to stimulate invasion, presumably by increasing host intracellular free Ca levels. Measurement of host-cell cytosolic Ca via spectrofluorimetry and fluorescence microscopy revealed an increase in Ca from 10 min post-infection. Monolayer pretreatment with either a calmodulin antagonist or a specific inhibitor of protein kinase C was found to cause a marked reduction in invasion, suggesting roles for these Ca-activated modulators in signal-transduction events involved in invasion. These results demonstrate that induces the mobilization of Ca from host intracellular stores, which is an essential step in the invasion of intestinal cells by this pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27866-0
2005-09-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513097.html?itemId=/content/journal/micro/10.1099/mic.0.27866-0&mimeType=html&fmt=ahah

References

  1. Bierne, H., Dramsi, S., Gratacap, M. P., Randriamampita, C., Carpenter, G., Payrastre, B. & Cossart, P. ( 2000; ). The invasion protein InIB from Listeria monocytogenes activates PLC-gamma1 downstream from PI 3-kinase. Cell Microbiol 2, 465–476.[CrossRef]
    [Google Scholar]
  2. Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P. & Blaser, M. J. ( 1988; ). Experimental Campylobacter jejuni infection in humans. J Infect Dis 157, 472–479.[CrossRef]
    [Google Scholar]
  3. Clapham, D. E. ( 1995; ). Calcium signaling. Cell 80, 259–268.[CrossRef]
    [Google Scholar]
  4. Clerc, P. L., Berthon, B., Claret, M. & Sansonetti, P. J. ( 1989; ). Internalization of Shigella flexneri into HeLa cells occurs without an increase in cytosolic Ca2+ concentration. Infect Immun 57, 2919–2922.
    [Google Scholar]
  5. Falkow, S., Isberg, R. R. & Portnoy, D. A. ( 1992; ). The interaction of bacteria with mammalian cells. Annu Rev Cell Biol 8, 333–363.[CrossRef]
    [Google Scholar]
  6. Galan, J. E. ( 1996; ). Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20, 263–271.[CrossRef]
    [Google Scholar]
  7. Gewirtz, A. T., Rao, A. S., Simon, P. O., Jr, Merlin, D., Carnes, D., Madara, J. L. & Neish, A. S. ( 2000; ). Salmonella typhimurium induces epithelial IL-8 expression via Ca++-mediated activation of the NF-kappaB pathway. J Clin Invest 105, 79–92.[CrossRef]
    [Google Scholar]
  8. Hu, L. & Kopecko, D. J. ( 1999; ). Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun 67, 4171–4182.
    [Google Scholar]
  9. Hu, L. & Kopecko, D. J. ( 2000; ). Interactions of Campylobacter with eukaryotic cells: gut luminal colonization and mucosal invasion mechanisms, pp. 191–215. In Campylobacter, 2nd edn. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  10. Huang, X. Z., Tall, B., Schwan, W. R. & Kopecko, D. J. ( 1998; ). Physical limitations on Salmonella typhi entry into cultured human intestinal epithelial cells. Infect Immun 66, 2928–2937.
    [Google Scholar]
  11. Jacob, R. ( 1990; ). Calcium oscillations in electrically non-excitable cells erratum appears. Biochim Biophys Acta 1052, 427–438.[CrossRef]
    [Google Scholar]
  12. Kanwar, R. K., Ganguly, N. K., Kumar, L., Rakesh, J., Panigrahi, D. & Walia, B. N. S. ( 1995; ). Calcium and protein kinase C play an important role in Campylobacter jejuni-induced changes in Na+ and Cl transport in rat ileum in vitro. Biochim Biophys Acta 1270, 179–192.[CrossRef]
    [Google Scholar]
  13. Kao, J. P., Harootunian, A. T. & Tsien, R. Y. ( 1989; ). Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264, 8179–8184.
    [Google Scholar]
  14. Klee, C. B. & Vanaman, T. C. ( 1982; ). Calmodulin. Adv Protein Chem 35, 213–321.
    [Google Scholar]
  15. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  16. Kopecko, D. J., Hu, L. & Zaal, K. J. M. ( 2001; ). Campylobacter jejuni – microtubule-dependent invasion. Trends Microbiol 9, 389–396.[CrossRef]
    [Google Scholar]
  17. Korlath, J. A., Osterholm, M. T., Judy, L. A., Forfang, J. C. & Robinson, R. A. ( 1985; ). A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152, 592–596.[CrossRef]
    [Google Scholar]
  18. Li, L., Tucker, R. W., Hennings, H. & Yuspa, S. H. ( 1995; ). Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro. J Cell Physiol 163, 105–114.[CrossRef]
    [Google Scholar]
  19. Majeed, M., Ernst, J. D., Magnusson, K. E., Kihlstrom, E. & Stendahl, O. ( 1994; ). Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells. Infect Immun 62, 126–134.
    [Google Scholar]
  20. Marks, P. W. & Maxfield, F. R. ( 1990a; ). Local and global changes in cytosolic free calcium in neutrophils during chemotaxis and phagocytosis. Cell Calcium 11, 181–190.[CrossRef]
    [Google Scholar]
  21. Marks, P. W. & Maxfield, F. R. ( 1990b; ). Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol 110, 43–52.[CrossRef]
    [Google Scholar]
  22. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  23. Meldolesi, J., Clementi, E., Fasolato, C., Zacchetti, D. & Pozzan, T. ( 1991; ). Ca2+ influx following receptor activation. Trends Pharmacol Sci 12, 289–292.[CrossRef]
    [Google Scholar]
  24. Miyamoto, T., Itoh, M., Noguchi, Y. & Yokochi, K. ( 1992; ). Role of intracellular Ca2+ and the calmodulin messenger system in pepsinogen secretion from isolated rabbit gastric mucosa. Gut 33, 21–25.[CrossRef]
    [Google Scholar]
  25. Norris, V., Grant, S., Freestone, P., Canvin, J., Sheikh, F. N., Toth, I., Trinei, M., Modha, K. & Norman, R. I. ( 1996; ). Calcium signalling in bacteria. J Bacteriol 178, 3677–3682.
    [Google Scholar]
  26. Oelschlaeger, T. A., Guerry, P. & Kopecko, D. J. ( 1993; ). Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci U S A 90, 6884–6888.[CrossRef]
    [Google Scholar]
  27. Pace, J., Hayman, M. J. & Galan, J. E. ( 1993; ). Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72, 505–514.[CrossRef]
    [Google Scholar]
  28. Ruschkowski, S., Rosenshine, I. & Finlay, B. B. ( 1992; ). Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Microbiol Lett 95, 121–126.[CrossRef]
    [Google Scholar]
  29. Shevach, E. M. ( 2000; ). Immunofluorescence and cell sorting. In Current Protocols in Immunology, vol. 1, pp. 5.1.1–5.8.10. Edited by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach & W. Strober. New York: Wiley.
  30. Song, S. K., Karl, I. E., Ackerman, J. J. & Hotchkiss, R. S. ( 1993; ). Increased intracellular Ca2+: a critical link in the pathophysiology of sepsis? Proc Natl Acad Sci U S A 90, 3933–3937.[CrossRef]
    [Google Scholar]
  31. Tanaka, T., Ohmura, T., Yamakado, T. & Hidaka, H. ( 1982; ). Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol 22, 408–412.
    [Google Scholar]
  32. Tran Van Nhieu, G., Clair, C., Bruzzone, R., Mesnil, M., Sansonetti, P. & Combettes, L. ( 2003; ). Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5, 720–726.[CrossRef]
    [Google Scholar]
  33. Tran Van Nhieu, G., Clair, C., Grompone, G. & Sansonetti, P. ( 2004; ). Calcium signalling during cell interactions with bacterial pathogens. Biol Cell 96, 93–101.[CrossRef]
    [Google Scholar]
  34. Tsien, R. W. & Tsien, R. Y. ( 1990; ). Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6, 715–760.[CrossRef]
    [Google Scholar]
  35. Tsien, R. Y. ( 1980; ). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.[CrossRef]
    [Google Scholar]
  36. Tsien, R. Y. ( 1989; ). Fluorescent indicators of ion concentrations. Methods Cell Biol 30, 127–156.
    [Google Scholar]
  37. Vandenberghe, P. A. & Ceuppens, J. L. ( 1990; ). Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J Immunol Methods 127, 197–205.[CrossRef]
    [Google Scholar]
  38. Wooldridge, K. G., Williams, P. H. & Ketley, J. M. ( 1996; ). Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21, 299–305.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27866-0
Loading
/content/journal/micro/10.1099/mic.0.27866-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error