1887

Abstract

, a lactic acid bacterium widely used for food fermentations, is often exposed to damaging stress conditions. In particular, oxidative stress leads to DNA, protein and membrane damages that can be lethal. As has no catalase, the impact of production of the haem catalase KatE on its oxidative stress resistance was tested. This cytoplasmic catalase was engineered for extracellular expression in with an optimization strategy based on fusion to the nisin-inducible promoter and a lactococcal signal peptide (SP). The production of KatE by conferred an 800-fold increase in survival after 1 h exposure to 4 mM hydrogen peroxide, and a 160-fold greater survival in long-term (3 days) survival of aerated cultures in a mutant, which is unable to respire. The presence of KatE protected DNA from oxidative damage and limited its degradation after long-term aeration in a / mutant, defective in DNA repair. is thus able to produce active catalase that can provide efficient antioxidant activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27861-0
2005-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513011.html?itemId=/content/journal/micro/10.1099/mic.0.27861-0&mimeType=html&fmt=ahah

References

  1. Abriouel, H., Herrmann, A., Starke, J., Yousif, N. M., Wijaya, A., Tauscher, B., Holzapfel, W. & Franz, C. M. ( 2004; ). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70, 603–606.[CrossRef]
    [Google Scholar]
  2. Berlett, B. S. & Stadtman, E. R. ( 1997; ). Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272, 20313–20316.[CrossRef]
    [Google Scholar]
  3. Bermudez-Humaran, L. G., Langella, P., Miyoshi, A., Gruss, A., Guerra, R. T., Montes de Oca-Luna, R. & Le Loir, Y. ( 2002; ). Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68, 917–922.[CrossRef]
    [Google Scholar]
  4. Bermudez-Humaran, L. G., Langella, P., Commissaire, J., Gilbert, S., Le Loir, Y., L'Haridon, R. & Corthier, G. ( 2003; ). Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224, 307–313.[CrossRef]
    [Google Scholar]
  5. Bruno-Barcena, J. M., Andrus, J. M., Libby, S. L., Klaenhammer, T. R. & Hassan, H. M. ( 2004; ). Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol 70, 4702–4710.[CrossRef]
    [Google Scholar]
  6. Condon, S. ( 1987; ). Responses of lactic acid bacteria to oxygen. FEMS Microbiology Lett 46, 269–280.[CrossRef]
    [Google Scholar]
  7. de Ruyter, P. G., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I. & de Vos, W. M. ( 1996a; ). Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178, 3434–3439.
    [Google Scholar]
  8. de Ruyter, P. G., Kuipers, O. P. & de Vos, W. M. ( 1996b; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  9. Duwat, P., Ehrlich, S. D. & Gruss, A. ( 1995; ). The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17, 1121–1131.[CrossRef]
    [Google Scholar]
  10. Duwat, P., Sourice, S., Cesselin, B. & 7 other authors ( 2001; ). Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183, 4509–4516.[CrossRef]
    [Google Scholar]
  11. Engelmann, S., Lindner, C. & Hecker, M. ( 1995; ). Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J Bacteriol 177, 5598–5605.
    [Google Scholar]
  12. Farr, S. B. & Kogoma, T. ( 1991; ). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55, 561–585.
    [Google Scholar]
  13. Fridovich, I. ( 1998; ). Oxygen toxicity: a radical explanation. J Exp Biol 201, 1203–1209.
    [Google Scholar]
  14. Gaudu, P., Lamberet, G., Poncet, S. & Gruss, A. ( 2003; ). CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol Microbiol 50, 183–192.[CrossRef]
    [Google Scholar]
  15. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1–9.
    [Google Scholar]
  16. Gibson, T. J. ( 1984; ). Studies of the Eppstein – Barr virus genome. PhD thesis, University of Cambridge, UK.
  17. Igarashi, T., Kono, Y. & Tanaka, K. ( 1996; ). Molecular cloning of manganese catalase from Lactobacillus plantarum. J Biol Chem 271, 29521–29524.[CrossRef]
    [Google Scholar]
  18. Imlay, J. A. ( 2003; ). Pathways of oxidative damage. Annu Rev Microbiol 57, 395–418.[CrossRef]
    [Google Scholar]
  19. Knauf, H. J., Vogel, R. F. & Hammes, W. P. ( 1992; ). Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58, 832–839.
    [Google Scholar]
  20. Kruidenier, L. & Verspaget, H. W. ( 2002; ). Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease – radicals or ridiculous? Aliment Pharmacol Ther 16, 1997–2015.[CrossRef]
    [Google Scholar]
  21. Kruidenier, L., Kuiper, I., Lamers, C. B. & Verspaget, H. W. ( 2003a; ). Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol 201, 28–36.[CrossRef]
    [Google Scholar]
  22. Kruidenier, L., Kuiper, I., van Duijn, W., Marklund, S. L., van Hogezand, R. A., Lamers, C. B. & Verspaget, H. W. ( 2003b; ). Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J Pathol 201, 7–16.[CrossRef]
    [Google Scholar]
  23. Kruidenier, L., Kuiper, I., Van Duijn, W., Mieremet-Ooms, M. A., van Hogezand, R. A., Lamers, C. B. & Verspaget, H. W. ( 2003c; ). Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 201, 17–27.[CrossRef]
    [Google Scholar]
  24. Kruidenier, L., van Meeteren, M. E., Kuiper, I., Jaarsma, D., Lamers, C. B., Zijlstra, F. J. & Verspaget, H. W. ( 2003d; ). Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn-SOD mice. Free Radic Biol Med 34, 753–765.[CrossRef]
    [Google Scholar]
  25. Kuipers, O. P., de Ruyters, P. G., Kleerezen, M. & Vos, W. M. D. ( 1998; ). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  26. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  27. Langella, P., Le Loir, Y., Ehrlich, S. D. & Gruss, A. ( 1993; ). Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol 175, 5806–5813.
    [Google Scholar]
  28. Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. ( 1994; ). Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J Bacteriol 176, 5135–5139.
    [Google Scholar]
  29. Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. ( 1998; ). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180, 1895–1903.
    [Google Scholar]
  30. Le Loir, Y., Nouaille, S., Commissaire, J., Bretigny, L., Gruss, A. & Langella, P. ( 2001; ). Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67, 4119–4127.[CrossRef]
    [Google Scholar]
  31. Mares, A., Neyts, K. & Debevere, J. ( 1994; ). Influence of pH, salt and nitrite on the heme-dependent catalase activity of lactic acid bacteria. Int J Food Microbiol 24, 191–198.[CrossRef]
    [Google Scholar]
  32. Noonpakdee, W., Sitthimonchai, S., Panyim, S. & Lertsiri, S. ( 2004; ). Expression of the catalase gene katA in starter culture Lactobacillus plantarum TISTR850 tolerates oxidative stress and reduces lipid oxidation in fermented meat product. Int J Food Microbiol 95, 127–135.[CrossRef]
    [Google Scholar]
  33. Nouaille, S., Ribeiro, L. A., Miyoshi, A., Pontes, D., Le Loir, Y., Oliveira, S. C., Langella, P. & Azevedo, V. ( 2003; ). Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2, 102–111.
    [Google Scholar]
  34. Pifferi, P.-G. B.-V., Spagna, G. & Tramontini, M. ( 1993; ). Immobilization of catalase on macromolecular supports activated with acid dyes. Process Biochem 28, 29–38.[CrossRef]
    [Google Scholar]
  35. Renault, P., Corthier, G., Goupil, N., Delorme, C. & Ehrlich, S. D. ( 1996; ). Plasmid vectors for gram-positive bacteria switching from high to low copy number. Gene 183, 175–182.[CrossRef]
    [Google Scholar]
  36. Rezaïki, L., Cesselin, B., Yamamoto, Y., Vido, K., van West, E., Gaudu, P. & Gruss, A. ( 2004; ). Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53, 1331.[CrossRef]
    [Google Scholar]
  37. Rochat, T., Gratadoux, J. J., Corthier, G., Coqueran, B., Nader-Macias, M. E., Gruss, A. & Langella, P. ( 2005; ). Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 71, 2782–2788.[CrossRef]
    [Google Scholar]
  38. Ross, S. ( 1991; ). The involvement of oxygen radicals in microbicidal mechanism of leukocytes and macrophages. Klin Wochenschr 69, 975–980.[CrossRef]
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Sanders, J. W., Leenhouts, K. J., Haandrikman, A. J., Venema, G. & Kok, J. ( 1995; ). Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J Bacteriol 177, 5254–5260.
    [Google Scholar]
  41. Simon, D. & Chopin, A. ( 1988; ). Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70, 559–566.[CrossRef]
    [Google Scholar]
  42. Simonen, M. & Palva, I. ( 1993; ). Protein secretion in Bacillus species. Microbiol Rev 57, 109–137.
    [Google Scholar]
  43. Sinha, A. K. ( 1972; ). Colorimetric assay of catalase. Anal Biochem 47, 389–394.[CrossRef]
    [Google Scholar]
  44. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  45. Sun, J., Chen, Y., Li, M. & Ge, Z. ( 1998; ). Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 24, 586–593.[CrossRef]
    [Google Scholar]
  46. van Asseldonk, M., Rutten, G., Oteman, M., Siezen, R. J., de Vos, W. M. & Simons, G. ( 1990; ). Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95, 155–160.[CrossRef]
    [Google Scholar]
  47. van der Vossen, J. M., van der Lelie, D. & Venema, G. ( 1987; ). Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53, 2452–2457.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27861-0
Loading
/content/journal/micro/10.1099/mic.0.27861-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error