1887

Abstract

Phages have been proposed as natural antimicrobial agents to fight bacterial infections in humans, in animals or in crops of agricultural importance. Phages have also been discussed as hygiene measures in food production facilities and hospitals. These proposals have a long history, but are currently going through a kind of renaissance as documented by a spate of recent reviews. This review discusses the potential of phage therapy with a specific example, namely .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27849-0
2005-07-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512133.html?itemId=/content/journal/micro/10.1099/mic.0.27849-0&mimeType=html&fmt=ahah

References

  1. Abedon, S. T., Hyman, P. & Thomas, C. ( 2003; ). Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 69, 7499–7506.[CrossRef]
    [Google Scholar]
  2. Ackermann, H. W. & Krisch, H. M. ( 1997; ). A catalogue of T4-type bacteriophages. Arch Virol 142, 2329–2345.[CrossRef]
    [Google Scholar]
  3. Ackermann, H. W. & Nguyen, T. M. ( 1983; ). Sewage coliphages studied by electron microscopy. Appl Environ Microbiol 45, 1049–1059.
    [Google Scholar]
  4. Albert, M. J., Faruque, S. M., Faruque, A. S., Neogi, P. K., Ansaruzzaman, M., Bhuiyan, N. A., Alam, K. & Akbar, M. S. ( 1995; ). Controlled study of Escherichia coli diarrheal infections in Bangladeshi children. J Clin Microbiol 33, 973–977.
    [Google Scholar]
  5. Alisky, J., Iczkowski, K., Rapoport, A. & Troitsky, N. ( 1998; ). Bacteriophages show promise as antimicrobial agents. J Infect 36, 5–15.[CrossRef]
    [Google Scholar]
  6. Babalova, E. G., Katsitadze, K. T., Sakvaredidze, L. A. & 10 other authors ( 1968; ). Preventive value of dried dysentery bacteriophage. Zh Mikrobiol Epidemiol Immunobiol 2, 143–145.
    [Google Scholar]
  7. Barondess, J. J. & Beckwith, J. ( 1990; ). A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346, 871–874.[CrossRef]
    [Google Scholar]
  8. Barrow, P., Lovell, M. & Berchieri, A., Jr ( 1998; ). Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 5, 294–298.
    [Google Scholar]
  9. Bhan, M. K., Mahalanabis, D., Fontaine, O. & Pierce, N. F. ( 1994; ). Clinical trials of improved oral rehydration salt formulations: a review. Bull World Health Organ 72, 945–955.
    [Google Scholar]
  10. Black, R. E. ( 1990; ). Epidemiology of travelers' diarrhea and relative importance of various pathogens. Rev Infect Dis 12, S73–S79.[CrossRef]
    [Google Scholar]
  11. Bohannan, B. J. M. & Lenski, R. E. ( 2000; ). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3, 362–377.[CrossRef]
    [Google Scholar]
  12. Boyd, E. F. & Brüssow, H. ( 2002; ). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10, 521–529.[CrossRef]
    [Google Scholar]
  13. Brüssow, H., Fremont, M., Bruttin, A., Sidoti, J., Constable, A. & Fryder, V. ( 1994; ). Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl Environ Microbiol 60, 4537–4543.
    [Google Scholar]
  14. Brüssow, H., Canchaya, C. & Hardt, W. D. ( 2004; ). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68, 560–602.[CrossRef]
    [Google Scholar]
  15. Bruttin, A. & Brüssow, H. ( 2005; ). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49 (in press).
    [Google Scholar]
  16. Buckling, A. & Rainey, P. B. ( 2002; ). Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B 269, 931–936.[CrossRef]
    [Google Scholar]
  17. Bull, J. J., Levin, B. R., DeRouin, T., Walker, N. & Bloch, C. A. ( 2002; ). Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol 2, 35.[CrossRef]
    [Google Scholar]
  18. Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. ( 2003; ). Prophage genomics. Microbiol Mol Biol Rev 67, 238–276.[CrossRef]
    [Google Scholar]
  19. Chang, D. E., Smalley, D. J., Tucker, D. L. & 8 other authors ( 2004; ). Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101, 7427–7432.[CrossRef]
    [Google Scholar]
  20. Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L. & Brüssow, H. ( 2004a; ). Phage-host interaction: an ecological perspective. J Bacteriol 186, 3677–3686.[CrossRef]
    [Google Scholar]
  21. Chibani-Chennoufi, S., Canchaya, C., Bruttin, A. & Brüssow, H. ( 2004b; ). Comparative genomics of the T4-like Escherichia coli phage JS98: implications for the evolution of T4 phages. J Bacteriol 186, 8276–8286.[CrossRef]
    [Google Scholar]
  22. Chibani-Chennoufi, S., Dillmann, M. L., Marvin-Guy, L., Rami-Shojaei, S. & Brüssow, H. ( 2004c; ). Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186, 7069–7083.[CrossRef]
    [Google Scholar]
  23. Chibani-Chennoufi, S., Sidoti, J., Bruttin, A., Dillmann, M.-L., Kutter, E., Qadri, F., Sarker, S. A. & Brüssow, H. ( 2004d; ). Isolation of Escherichia coli bateriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186, 8287–8294.[CrossRef]
    [Google Scholar]
  24. Chibani-Chennoufi, S., Sidoti, J., Bruttin, A., Kutter, E., Sarker, S. & Brüssow, H. ( 2004e; ). In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 48, 2558–2569.[CrossRef]
    [Google Scholar]
  25. Dhillon, T. S., Dhillon, E. K., Chau, H. C., Li, W. K. & Tsang, A. H. ( 1976; ). Studies on bacteriophage distribution: virulent and temperate bacteriophage content of mammalian feces. Appl Environ Microbiol 32, 68–74.
    [Google Scholar]
  26. Donnenberg, M. S. ( 2002; ). Escherichia coli: Virulence Mechanisms of a Versatile Pathogen. Amsterdam: Academic Press.
  27. Dubos, R. J., Hookey Straus, J. & Pierce, C. ( 1943; ). The multiplication of bacteriophage in vivo and its protective effect against an experimental infection with Shigella dysenteriae. J Exp Med 78, 161–168.[CrossRef]
    [Google Scholar]
  28. Duckworth, D. H. ( 1999; ). History of virology: bacteriophages. In Encyclopedia of Virology, pp. 725–730. Edited by A. Granoff & R. G. Webster. Memphis, TN: Academic Press.
  29. Furuse, K. ( 1987; ). Distribution of coliphages in the general environment: general considerations. In Phage Ecology, pp. 87–124. Edited by S. M. Goyal, C. P. Gerba & G. Bitton. New York: Wiley.
  30. Furuse, K., Osawa, S., Kawashiro, J., Tanaka R., Ozawa, A., Sawamura, S., Yanagawa, Y., Nagao, T. & Watanabe, I. ( 1983; ). Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J Gen Virol 64, 2039–2043.[CrossRef]
    [Google Scholar]
  31. Geier, M. R. & Merril, C. R. ( 1972; ). Lambda phage transcription in human fibroblasts. Virology 47, 638–643.[CrossRef]
    [Google Scholar]
  32. Goode, D., Allen, V. M. & Barrow, P. A. ( 2003; ). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69, 5032–5036.[CrossRef]
    [Google Scholar]
  33. Goodridge, L., Gallaccio, A. & Griffiths, M. W. ( 2003; ). Morphological, host range, and genetic characterization of two coliphages. Appl Environ Microbiol 69, 5364–5371.[CrossRef]
    [Google Scholar]
  34. Hadas, H., Einav, M., Fishov, I. & Zaritsky, A. ( 1997; ). Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185.[CrossRef]
    [Google Scholar]
  35. Harcombe, W. R. & Bull, J. J. ( 2005; ). Phage impact in two-species bacterial communities. Appl Environ Microbiol (in press).
    [Google Scholar]
  36. Häusler, T. ( 2003; ). Gesund durch Viren. München: Piper Verlag (in German).
  37. Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M. & Donoghue, A. M. ( 2002; ). Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci 81, 1486–1491.[CrossRef]
    [Google Scholar]
  38. Kamp, D., Kahmann, R., Zipser, D., Broker, T. R. & Chow, L. T. ( 1978; ). Inversion of the G DNA segment of phage Mu controls phage infectivity. Nature 271, 577–580.[CrossRef]
    [Google Scholar]
  39. Karam, J. D. ( 1994; ). Molecular Biology of Bacteriophage T4. Washington, DC: American Society for Microbiology.
  40. Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G. & Norris, J. S. ( 2002; ). Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76, 5557–5564.[CrossRef]
    [Google Scholar]
  41. Krogfelt, K. A., Poulsen, L. K. & Molin, S. ( 1993; ). Identification of coccoid Escherichia coli BJ4 cells in the large intestine of streptomycin-treated mice. Infect Immun 61, 5029–5034.
    [Google Scholar]
  42. Kudva, I. T., Jelacic, S., Tarr, P. I., Youderian, P. & Hovde, C. J. ( 1999; ). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65, 3767–3773.
    [Google Scholar]
  43. Kutter, E., Kellenberger, E., Carlson, K., Eddy, S., Neitzel, J., Messinger, L., North, J. & Guttman, B. ( 1994; ). Effects of bacterial growth conditions and physiology on T4 infection. In Molecular Biology of Bacteriophage T4, pp. 406–418. Edited by J. D. Karam. Washington, DC: American Society for Microbiology
  44. Levin, B. R. & Bull, J. J. ( 2004; ). Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2, 166–173.[CrossRef]
    [Google Scholar]
  45. Lu, Z., Breidt, F., Jr, Fleming, H. P., Altermann, E. & Klaenhammer, T. R. ( 2003a; ). Isolation and characterization of a Lactobacillus plantarum bacteriophage, phiJL-1, from a cucumber fermentation. Int J Food Microbiol 84, 225–235.[CrossRef]
    [Google Scholar]
  46. Lu, Z., Breidt, F., Plengvidhya, V. & Fleming, H. P. ( 2003b; ). Bacteriophage ecology in commercial sauerkraut fermentations. Appl Environ Microbiol 69, 3192–3202.[CrossRef]
    [Google Scholar]
  47. Luria, S. E. & Delbrück, M. ( 1943; ). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511.
    [Google Scholar]
  48. Merril, C. R., Geier, M. R. & Petricciani, J. C. ( 1971; ). Bacterial virus gene expression in human cells. Nature 233, 398–400.[CrossRef]
    [Google Scholar]
  49. Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S. & Adhya, S. ( 1996; ). Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A 93, 3188–3192.[CrossRef]
    [Google Scholar]
  50. Merril, C. R., Scholl, D. & Adhya, S. L. ( 2003; ). The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2, 489–497.[CrossRef]
    [Google Scholar]
  51. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. & Ruger, W. ( 2003; ). Bacteriophage T4 genome. Microbiol Mol Biol Rev 67, 86–156.[CrossRef]
    [Google Scholar]
  52. Mizoguchi, K., Morita, M., Fischer, C. R., Yoichi, M., Tanji, Y. & Unno, H. ( 2003; ). Coevolution of bacteriophage PP01 and Escherichia coli O157 : H7 in continuous culture. Appl Environ Microbiol 69, 170–176.[CrossRef]
    [Google Scholar]
  53. Morita, M., Tanji, Y., Mizoguchi, K., Akitsu, T., Kijima, N. & Unno, H. ( 2002; ). Characterization of a virulent bacteriophage specific for Escherichia coli O157 : H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol Lett 211, 77–83.[CrossRef]
    [Google Scholar]
  54. Morton, H. E. & Engley, F. B. J. ( 1945; ). The protective action of dysentery bacteriophage in experimental infections in mice. J Bacteriol 49, 245–255.
    [Google Scholar]
  55. Morton, H. E. & Perez-Otero, J. E. ( 1945; ). The increase of bacteriophage in vivo during experimental infections with Shigella paradysenteriae, flexner, in mice. J Bacteriol 49, 237–244.
    [Google Scholar]
  56. O'Flynn, G., Ross, R. P., Fitzgerald, G. F. & Coffey, A. ( 2004; ). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157 : H7. Appl Environ Microbiol 70, 3417–3424.[CrossRef]
    [Google Scholar]
  57. Payne, R. J. & Jansen, V. A. ( 2003; ). Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42, 315–325.[CrossRef]
    [Google Scholar]
  58. Poulsen, L. K., Licht, T. R., Rang, C., Krogfelt, K. A. & Molin, S. ( 1995; ). Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177, 5840–5845.
    [Google Scholar]
  59. Repoila, F., Tétart, F., Bouet, J. Y. & Krisch, H. M. ( 1994; ). Genomic polymorphism in the T-even bacteriophages. EMBO J 13, 4181–4192.
    [Google Scholar]
  60. Robins-Browne, R. M. ( 1987; ). Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev Infect Dis 9, 28–53.[CrossRef]
    [Google Scholar]
  61. Savarino, S. J., Hall, E. R., Bassily, S. & 14 other authors ( 2002; ). Introductory evaluation of an oral, killed whole cell enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Egyptian infants. Pediatr Infect Dis J 21, 322–330.[CrossRef]
    [Google Scholar]
  62. Schade, A. L. & Caroline, L. ( 1943; ). The preparation of a polyvalent dysentery bacteriophage in a dry and stable form. I. Preliminary investigations and general procedures. J Bacteriol 46, 463–473.
    [Google Scholar]
  63. Schade, A. L. & Caroline, L. ( 1944a; ). The preparation of a polyvalent dysentery bacteriophage in a dry and stable form. II. Factors affecting the stabilization of dysentery bacteriophage during lyophilization. J Bacteriol 48, 179–190.
    [Google Scholar]
  64. Schade, A. L. & Caroline, L. ( 1944b; ). The preparation of a polyvalent dysentery bacteriophage in a dry and stable form. III. Stability of the dried bacteriophage towards heat, humidity, age and acidity. J Bacteriol 48, 243–251.
    [Google Scholar]
  65. Schluederberg, S. A., Marshall, B., Tachibana, C. & Levy, S. B. ( 1980; ). Recovery frequency of phages lambda and M13 from human and animal faeces. Nature 283, 792–794.[CrossRef]
    [Google Scholar]
  66. Scholl, D., Rogers, S., Adhya, S. & Merril, C. R. ( 2001; ). Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75, 2509–2515.[CrossRef]
    [Google Scholar]
  67. Schubbert, R., Renz, D., Schmitz, B. & Doerfler, W. ( 1997; ). Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci U S A 94, 961–966.[CrossRef]
    [Google Scholar]
  68. Schubbert, R., Hohlweg, U., Renz, D. & Doerfler, W. ( 1998; ). On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol Gen Genet 259, 569–576.[CrossRef]
    [Google Scholar]
  69. Slopek, S., Weber-Dabrowska, M., Dabrowski, M. & Kucharewicz-Krukowska, A. ( 1987; ). Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp 35, 569–583.
    [Google Scholar]
  70. Smith, H. W. & Huggins, M. B. ( 1982; ). Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128, 307–318.
    [Google Scholar]
  71. Smith, H. W. & Huggins, M. B. ( 1983; ). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129, 2659–2675.
    [Google Scholar]
  72. Smith, H. W., Huggins, M. B. & Shaw, K. M. ( 1987a; ). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133, 1127–1135.
    [Google Scholar]
  73. Smith, H. W., Huggins, M. B. & Shaw, K. M. ( 1987b; ). The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133, 1111–1126.
    [Google Scholar]
  74. Snyder, J. D. & Merson, M. H. ( 1982; ). The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull World Health Organ 60, 605–613.
    [Google Scholar]
  75. Sulakvelidze, A. & Kutter, E. ( 2005; ). Bacteriophage therapy in humans. In Bacteriophages – Biology and Applications, pp. 381–436. Edited by E. Kutter & A. Sulakvelidze. Boca Raton, FL: CRC Press.
  76. Sulakvelidze, A., Alavidze, Z. & Morris, J. G., Jr ( 2001; ). Bacteriophage therapy. Antimicrob Agents Chemother 45, 649–659.[CrossRef]
    [Google Scholar]
  77. Summers, W. C. ( 1999; ). Félix d'Hérelle and the Origins of Molecular Biology. New Haven, CT: Yale University Press.
  78. Summers, W. C. ( 2001; ). Bacteriophage therapy. Annu Rev Microbiol 55, 437–451.[CrossRef]
    [Google Scholar]
  79. Tétart, F., Desplats, C. & Krisch, H. M. ( 1998; ). Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 282, 543–556.[CrossRef]
    [Google Scholar]
  80. Wagner, P. L. & Waldor, M. K. ( 2002; ). Bacteriophage control of bacterial virulence. Infect Immun 70, 3985–3993.[CrossRef]
    [Google Scholar]
  81. Weld, R. J., Butts, C. & Heinemann, J. A. ( 2004; ). Models of phage growth and their applicability to phage therapy. J Theor Biol 227, 1–11.[CrossRef]
    [Google Scholar]
  82. Wiggins, B. A. & Alexander, M. ( 1985; ). Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49, 19–23.
    [Google Scholar]
  83. Wommack, K. E. & Colwell, R. R. ( 2000; ). Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64, 69–114.[CrossRef]
    [Google Scholar]
  84. You, L., Suthers, P. F. & Yin, J. ( 2002; ). Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J Bacteriol 184, 1888–1894.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27849-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error