1887

Abstract

Eighteen enrichment cultures with taurine (2-aminoethanesulfonate) as the sole source of combined nitrogen under aerobic conditions were all successful, and 24 pure cultures were obtained. Only three of the cultures yielded an inorganic product, sulfate, from the sulfonate moiety of taurine, and the others were presumed to yield organosulfonates. Sulfoacetate, known from CGA009 under these conditions, was not detected in any culture, but sulfoacetaldehyde (as a hydrazone derivative) was tentatively detected in the outgrown medium of nine isolates. The compound was stable under these conditions and the identification was confirmed by MALDI-TOF-MS. Most sulfoacetaldehyde-releasing isolates were determined to be strains of , and a representative organism, strain SW1, was chosen for further work. A quantitative enzymic determination of sulfoacetaldehyde and its bisulfite addition complex was developed: it involved the NAD-coupled sulfoacetaldehyde dehydrogenase from . SW1 utilized taurine quantitatively and concomitantly with growth in, for example, an adipate-salts medium, and the release of sulfoacetaldehyde was stoichiometric. The deamination reaction involved a taurine dehydrogenase. Enrichment cultures to explore the possible release of organophosphonates from the analogous substrate, 2-aminoethanephosphonate, led to 33 isolates, all of which released inorganic phosphate quantitatively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27838-0
2005-04-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511285.html?itemId=/content/journal/micro/10.1099/mic.0.27838-0&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U. 1983; Determination of metabolite concentrations with end-point methods. In Methods of Enzymic Analysis pp163–181 Edited by Bergmeyer H. U.. Weinheim: Verlag Chemie;
    [Google Scholar]
  2. Brüggemann C., Denger K., Cook A. M., Ruff J. 2004; Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology150:805–816[CrossRef]
    [Google Scholar]
  3. Chien C.-C., Leadbetter E. R., Godchaux W., III. 1999; Rhodococcus spp. utilize taurine (2-aminoethanesulfonate) as sole source of carbon, energy, nitrogen and sulfur for aerobic respiratory growth. FEMS Microbiol Lett176:333–337[CrossRef]
    [Google Scholar]
  4. Cook A. M. 1987; Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev46:93–116[CrossRef]
    [Google Scholar]
  5. Cook A. M., Denger K. 2002; Dissimilation of the C2 sulfonates. Arch Microbiol179:1–6[CrossRef]
    [Google Scholar]
  6. Cook A. M., Hütter R. 1981; s-Triazines as nitrogen sources for bacteria. J Agric Food Chem29:1135–1143[CrossRef]
    [Google Scholar]
  7. Cunningham C., Tipton K. F., Dixon H. B. F. 1998; Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J330:939–945
    [Google Scholar]
  8. Denger K., Ruff J., Rein U., Cook A. M. 2001; Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J357:581–586[CrossRef]
    [Google Scholar]
  9. Denger K., Ruff J., Schleheck D., Cook A. M. 2004a; Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology150:1859–1867[CrossRef]
    [Google Scholar]
  10. Denger K., Weinitschke S., Hollemeyer K., Cook A. M. 2004b; Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol182:254–258
    [Google Scholar]
  11. Eichhorn E., van der Ploeg J. R., Kertesz M. A., Leisinger T. 1997; Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem272:23031–23036[CrossRef]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Gesellschaft Deutscher Chemiker. 1996; German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge Weinheim: VCH;
    [Google Scholar]
  14. Gritzer R. F., Moffitt K., Godchaux W., Leadbetter E. R. 2003; Sulfoacetaldehyde bisulfite adduct is a substrate for enzymes presumed to act on sulfoacetaldehyde. J Microbiol Methods53:423–425[CrossRef]
    [Google Scholar]
  15. Huxtable R. J. 1992; Physiological actions of taurine. Physiol Rev72:101–163
    [Google Scholar]
  16. Kertesz M. A. 2000; Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev24:135–175
    [Google Scholar]
  17. Kertesz M. A. 2001; Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol152:279–290[CrossRef]
    [Google Scholar]
  18. Kondo H., Kagotani K., Oshima M., Ishimoto M. 1973; Purification and some properties of taurine dehydrogenase from a bacterium. J Biochem73:1269–1278
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  20. Laue H., Cook A. M. 2000; Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia. Arch Microbiol174:162–167[CrossRef]
    [Google Scholar]
  21. Laue H., Denger K., Cook A. M. 1997; Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol63:2016–2021
    [Google Scholar]
  22. Lie T. J., Pitta T., Leadbetter E. R., Leadbetter J. R, Godchaux W. III. 1996; Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol166:204–210[CrossRef]
    [Google Scholar]
  23. Moran M. A., Buchan A., González J. M. 32 other authors 2004; Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature432:910–913[CrossRef]
    [Google Scholar]
  24. Novak R. T., Gritzer R. F., Leadbetter E. R., Godchaux W. 2004; Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides. Microbiology150:1881–1891[CrossRef]
    [Google Scholar]
  25. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol28:283–288[CrossRef]
    [Google Scholar]
  26. Rein U., Gueta R., Denger K., Ruff J., Hollemeyer K., Cook A. M. 2005; Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology151:737–747[CrossRef]
    [Google Scholar]
  27. Ruff J., Denger K., Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J369:275–285[CrossRef]
    [Google Scholar]
  28. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol143:3–6
    [Google Scholar]
  29. Ternan N. G., Quinn J. P. 1998; Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2. Syst Appl Microbiol21:346–352[CrossRef]
    [Google Scholar]
  30. Thurnheer T., Cook A. M., Leisinger T, Köhler T.. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol132:1215–1220
    [Google Scholar]
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  32. White R. H. 1988; Characterization of the enzymic conversion of sulfoacetaldehyde and l-cysteine into coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry27:7458–7462[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27838-0
Loading
/content/journal/micro/10.1099/mic.0.27838-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error