1887

Abstract

Mature biofilm and planktonic cells of cultured in a neutral pH environment were subjected to comparative proteome analysis. Of the 242 protein spots identified, 48 were significantly altered in their level of expression (<0·050) or were unique to planktonic or biofilm-grown cells. Among these were four hypothetical proteins as well as proteins known to be associated with the maintenance of competence or found to possess a -box-like element upstream of their coding gene. Most notable among the non-responsive genes were those encoding the molecular chaperones DnaK, GroEL and GroES, which are considered to be up-regulated by sessile growth. Analysis of the rest of the proteome indicated that a number of cellular functions associated with carbon uptake and cell division were down-regulated. The data obtained were consistent with the hypothesis that a reduction in the general growth rate of mature biofilms of in a neutral pH environment is associated with the maintenance of transformation without the concomitant stress response observed during the transient state of competence in bacterial batch cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27830-0
2005-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511823.html?itemId=/content/journal/micro/10.1099/mic.0.27830-0&mimeType=html&fmt=ahah

References

  1. Abranches, J., Chen, Y. Y. & Burne, R. A. ( 2003; ). Characterization of S. mutans strains deficient in EIIABMan of the sugar phosphotransferase system. Appl Environ Microbiol 69, 4760–4769.[CrossRef]
    [Google Scholar]
  2. Ajdic, D., Sutcliffe, I. C., Russell, R. R. & Ferretti, J. J. ( 1996; ). Organization and nucleotide sequence of the Streptococcus mutans galactose operon. Gene 180, 137–144.[CrossRef]
    [Google Scholar]
  3. Ajdic, D., McShan, W. M., McLaughlin, R. E. & 16 other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99, 14434–14439.[CrossRef]
    [Google Scholar]
  4. Alban, A., David, S. O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S. & Currie, I. ( 2003; ). A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.[CrossRef]
    [Google Scholar]
  5. Aspiras, M. B., Ellen, R. P. & Cvitkovitch, D. G. ( 2004; ). ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett 238, 167–174.
    [Google Scholar]
  6. Beloin, C. & Ghigo, J.-M. ( 2005; ). Finding gene expression patterns in bacterial biofilms. Trends Microbiol 13, 16–19.[CrossRef]
    [Google Scholar]
  7. Berge, M., Mortier-Barriere, I., Martin, B. & Claverys, J. P. ( 2003; ). Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 50, 527–536.[CrossRef]
    [Google Scholar]
  8. Berges, D. A., DeWolf, W. E. J., Dunn, G. L., Newman, D. J., Schmidt, S. J., Taggart, J. J. & Gilvarg, C. ( 1986; ). Studies on the active site of succinyl-CoA : tetrahydrodipicolinate N-succinyltransferase. Characterization using analogs of tetrahydrodipicolinate. J Biol Chem 261, 6160–6167.
    [Google Scholar]
  9. Bjedov, I., Tenaillon, O., Gerard, B., Souza, V., Denamur, E., Radman, M., Taddei, F. & Matic, I. ( 2003; ). Stress-induced mutagenesis in bacteria. Science 300, 1404–1409.[CrossRef]
    [Google Scholar]
  10. Boyer, K. G. & France, J. T. ( 1976; ). Alkaline phosphatase, arylsulfatase and beta-glucuronidase in saliva of cyclic women. Int J Fertil 21, 43–48.
    [Google Scholar]
  11. Campbell, E. A., Choi, S. Y. & Masure, H. R. ( 1998; ). A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27, 929–939.[CrossRef]
    [Google Scholar]
  12. Choe, J. K., Khan-Dawood, F. S. & Dawood, M. Y. ( 1983; ). Progesterone and estradiol in the saliva and plasma during the menstrual cycle. Am J Obstet Gynecol 147, 557–562.
    [Google Scholar]
  13. Claverys, J. P. & Martin, B. ( 2003; ). Bacterial ‘competence’ genes: signatures of active transformation, or only remnants? Trends Microbiol 11, 161–165.[CrossRef]
    [Google Scholar]
  14. Claverys, J. P., Prudhomme, M., Mortier-Barriere, I. & Martin, B. ( 2000; ). Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol Microbiol 35, 251–259.[CrossRef]
    [Google Scholar]
  15. Cordwell, S. J., Larsen, M. R., Cole, R. T. & Walsh, B. J. ( 2002; ). Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148, 2765–2781.
    [Google Scholar]
  16. Courcelle, J. & Hanawalt, P. C. ( 2003; ). RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37, 611–646.[CrossRef]
    [Google Scholar]
  17. Courcelle, J., Ganesan, A. K. & Hanawalt, P. C. ( 2001; ). Therefore, what are recombination proteins there for? Bioessays 23, 463–470.[CrossRef]
    [Google Scholar]
  18. Cvitkovitch, D. G. ( 2001; ). Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med 12, 217–243.[CrossRef]
    [Google Scholar]
  19. Cvitkovitch, D. G., Boyd, D. A., Thevenot, T. & Hamilton, I. R. ( 1995; ). Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. J Bacteriol 177, 2251–2258.
    [Google Scholar]
  20. Cvitkovitch, D. G., Li, Y. H. & Ellen, R. P. ( 2003; ). Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112, 1626–1632.[CrossRef]
    [Google Scholar]
  21. Dagkessamanskaia, A., Moscoso, M., Henard, V., Guiral, S., Overweg, K., Reuter, M., Martin, B., Wells, J. & Claverys, J. P. ( 2004; ). Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51, 1071–1086.[CrossRef]
    [Google Scholar]
  22. Dawes, C., Watanabe, S., Biglow-Lecomte, P. & Dibdin, G. H. ( 1989; ). Estimation of the velocity of the salivary film at some different locations in the mouth. J Dent Res 68, 1479–1482.[CrossRef]
    [Google Scholar]
  23. Dubnau, D. ( 1991; ). The regulation of genetic competence in Bacillus subtilis. Mol Microbiol 1, 11–18.
    [Google Scholar]
  24. Greenberg, M. M., Weledji, Y. N., Kim, J. & Bales, B. C. ( 2004; ). Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III. Biochemistry 43, 8178–8183.[CrossRef]
    [Google Scholar]
  25. Hahn, K., Faustoferri, R. C. & Quivey, R. G., Jr ( 1999; ). Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 31, 1489–1498.[CrossRef]
    [Google Scholar]
  26. Herp, A., Wu, A. M. & Moschera, J. ( 1979; ). Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol Cell Biochem 23, 27–44.
    [Google Scholar]
  27. Iwami, Y., Abbe, K., Takahashi-Abbe, S. & Yamada, T. ( 1992; ). Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol Immunol 7, 304–308.[CrossRef]
    [Google Scholar]
  28. Jacques, N. A., Hardy, L., Knox, K. W. & Wicken, A. J. ( 1979; ). Effect of growth conditions on the formation of extracellular lipoteichoic acid by Streptococcus mutans BHT. Infect Immun 25, 75–84.
    [Google Scholar]
  29. Jakubovics, N. S. & Jenkinson, H. F. ( 2001; ). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 1709–1718.
    [Google Scholar]
  30. Jayaraman, G. C., Penders, J. E. & Burne, R. A. ( 1997; ). Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol 25, 329–341.[CrossRef]
    [Google Scholar]
  31. Jefferson, K. K. ( 2004; ). What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236, 163–173.[CrossRef]
    [Google Scholar]
  32. Jonquières, R., Bierne, H., Fiedler, F., Gounon, P. & Cossart, P. ( 1999; ). Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34, 902–914.[CrossRef]
    [Google Scholar]
  33. Kitten, T., Munro, C. L., Michalek, S. M. & Macrina, F. L. ( 2000; ). Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 68, 4441–4451.[CrossRef]
    [Google Scholar]
  34. Kleerebezem, M., Quadri, L. E., Kuipers, O. P. & de Vos, W. M. ( 1997; ). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24, 895–904.[CrossRef]
    [Google Scholar]
  35. Lemos, J. A., Chen, Y. Y. & Burne, R. A. ( 2001; ). Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol 183, 6074–6084.[CrossRef]
    [Google Scholar]
  36. Lemos, J. A. C., Abranches, J. & Burne, R. A. ( 2005; ). Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7, 95–107.
    [Google Scholar]
  37. Len, A. C., Cordwell, S. J., Harty, D. W. S. & Jacques, N. A. ( 2003; ). Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics 3, 627–646.[CrossRef]
    [Google Scholar]
  38. Len, A. C., Harty, D. W. S. & Jacques, N. A. ( 2004a; ). Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150, 1339–1351.[CrossRef]
    [Google Scholar]
  39. Len, A. C., Harty, D. W. S. & Jacques, N. A. ( 2004b; ). Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150, 1353–1366.[CrossRef]
    [Google Scholar]
  40. Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. ( 2001a; ). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183, 897–908.[CrossRef]
    [Google Scholar]
  41. Li, Y. H., Hanna, M. N., Svensäter, G., Ellen, R. P. & Cvitkovitch, D. G. ( 2001b; ). Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183, 6875–6884.[CrossRef]
    [Google Scholar]
  42. Li, Y. H., Tang, N., Aspiras, M. B., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. ( 2002; ). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184, 2699–2708.[CrossRef]
    [Google Scholar]
  43. Lindner, C., Nijland, R., van Hartskamp, M., Bron, S., Hamoen, L. W. & Kuipers, O. P. ( 2004; ). Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J Bacteriol 186, 1097–1105.[CrossRef]
    [Google Scholar]
  44. Lindquist, B. & Emilson, C. G. ( 2004; ). Colonization of Streptococcus mutans and Streptococcus sobrinus genotypes and caries development in children to mothers harboring both species. Caries Res 38, 95–103.[CrossRef]
    [Google Scholar]
  45. Macgregor, I. D. ( 1989; ). Effects of smoking on oral ecology. A review of the literature. Clin Prev Dent 11, 3–7.
    [Google Scholar]
  46. Martin, B., Garcia, P., Castanie, M. P. & Claverys, J. P. ( 1995; ). The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 15, 367–379.[CrossRef]
    [Google Scholar]
  47. Masure, H. R., Pearce, B. J., Shio, H. & Spellerberg, B. ( 1998; ). Membrane targeting of RecA during genetic transformation. Mol Microbiol 27, 845–852.[CrossRef]
    [Google Scholar]
  48. Mortier-Barriere, I., de Saizieu, A., Claverys, J. P. & Martin, B. ( 1998; ). Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 27, 159–170.[CrossRef]
    [Google Scholar]
  49. Nouwens, A. S., Cordwell, S. J., Larsen, M. R., Molloy, M. P., Gillings, M., Willcox, M. D. & Walsh, B. J. ( 2000; ). Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis 21, 3797–3809.[CrossRef]
    [Google Scholar]
  50. Paik, S., Brown, A., Munro, C. L., Cornelissen, C. N. & Kitten, T. ( 2003; ). The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 185, 5967–5975.[CrossRef]
    [Google Scholar]
  51. Palmer, R. J., Jr & Caldwell, D. E. ( 1995; ). A flow cell for the study of plaque-biofilm development. J Microb Methods 24, 171–182.[CrossRef]
    [Google Scholar]
  52. Patel, S. S. & Picha, K. M. ( 2000; ). Structure and function of hexameric helicases. Annu Rev Biochem 69, 651–697.[CrossRef]
    [Google Scholar]
  53. Peterson, S. N., Sung, C. K., Cline, R. & 13 other authors ( 2004; ). Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51, 1051–1070.[CrossRef]
    [Google Scholar]
  54. Sabounchi-Schutt, F., Astrom, J., Olsson, I., Eklund, A., Grunewald, J. & Bjellqvist, B. ( 2000; ). An immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis 21, 3649–3656.[CrossRef]
    [Google Scholar]
  55. Saier, M. H., Jr, Chauvaux, S., Cook, G. M., Deutscher, J., Paulsen, I. T., Reizer, J. & Ye, J. J. ( 1996; ). Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142, 217–230.[CrossRef]
    [Google Scholar]
  56. Schleifer, K. H. & Kilpper-Bälz, R. ( 1987; ). Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10, 1–19.[CrossRef]
    [Google Scholar]
  57. Simpson, C. L. & Russell, R. R. B. ( 1998; ). Identification of a homolog of CcpA catabolite repressor protein in Streptococcus mutans. Infect Immun 66, 2085–2092.
    [Google Scholar]
  58. Sissons, C. H., Cutress, T. W., Hoffman, M. P. & Wakefield, J. S. ( 1991; ). A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res 70, 1409–1416.[CrossRef]
    [Google Scholar]
  59. Stanley, N. R., Britton, R. A., Grossman, A. D. & Lazazzera, B. A. ( 2003; ). Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185, 1951–1957.[CrossRef]
    [Google Scholar]
  60. Steffen, S. E., Katz, F. S. & Bryant, F. R. ( 2002; ). Complete inhibition of Streptococcus pneumoniae RecA protein-catalyzed ATP hydrolysis by single-stranded DNA-binding protein (SSB protein): implications for the mechanism of SSB protein-stimulated DNA strand exchange. J Biol Chem 277, 14493–14500.[CrossRef]
    [Google Scholar]
  61. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  62. Suntharalingam, P. & Cvitkovitch, D. G. ( 2005; ). Quorum sensing in streptococcal biofilm formation. Trends Microbiol 13, 3–6.[CrossRef]
    [Google Scholar]
  63. Tao, L., MacAlister, T. J. & Tanzer, J. M. ( 1993; ). Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res 72, 1032–1039.[CrossRef]
    [Google Scholar]
  64. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate : sugar phospho-transferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187–207.[CrossRef]
    [Google Scholar]
  65. Vadeboncoeur, C., St Martin, S., Brochu, D. & Hamilton, I. R. ( 1991; ). Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate : sugar phosphotransferase system in Streptococcus mutans Ingbritt. Infect Immun 59, 900–906.
    [Google Scholar]
  66. Velten, M., McGovern, S., Marsin, S., Ehrlich, S. D., Noirot, P. & Polard, P. ( 2003; ). A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol Cell 11, 1009–1020.[CrossRef]
    [Google Scholar]
  67. Volkert, M. R. & Landini, P. ( 2001; ). Transcriptional responses to DNA damage. Curr Opin Microbiol 4, 178–185.[CrossRef]
    [Google Scholar]
  68. Welin, J., Wilkins, J. C., Beighton, D., Wrzesinski, K., Fey, S. J., Mose-Larsen, P., Hamilton, I. R. & Svensäter, G. ( 2003; ). Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 227, 287–293.[CrossRef]
    [Google Scholar]
  69. Wen, Z. T. & Burne, R. A. ( 2002; ). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68, 1196–1203.[CrossRef]
    [Google Scholar]
  70. Zalewska, A., Zwierz, K., Zolkowski, K. & Gindzienski, A. ( 2000; ). Structure and biosynthesis of human salivary mucins. Acta Biochim Pol 47, 1067–1079.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27830-0
Loading
/content/journal/micro/10.1099/mic.0.27830-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error