1887

Abstract

is a leading cause of acute otitis media in children and is a cause of respiratory disease in adults with underlying lung disease. This organism is a strict human pathogen that has an absolute requirement for iron in order to grow and cause disease. Previous studies identified transferrin and lactoferrin receptors used by to obtain iron from the human host, yet other iron-acquisition systems remain undefined. In this study, it is demonstrated that this strict mucosal pathogen can utilize haemoglobin (Hb) as a sole source of iron for growth. A novel 107 kDa outer-membrane protein involved in Hb utilization by this pathogen was also identified. An isogenic mutant defective in this Hb-utilization protein (MhuA), 7169 : : , showed a significant lag during growth in the presence of Hb as the sole iron source. This protein appears to be expressed constitutively, regardless of growth conditions, and a mAb directed to MhuA demonstrated that this protein contains highly conserved, surface-exposed epitopes. Data demonstrating that expression of MhuA may be highly specific to isolates of are also presented, suggesting a potential role as a diagnostic marker. To our knowledge, this is the first report demonstrating that expresses an Hb-binding protein and that this bacterium can utilize Hb as a sole iron source for growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27820-0
2005-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511151.html?itemId=/content/journal/micro/10.1099/mic.0.27820-0&mimeType=html&fmt=ahah

References

  1. Aebi, C., Stone, B., Beucher, M., Cope, L. D., Maciver, I., Thomas, S. E., McCracken, G. H., Jr, Sparling, P. F. & Hansen, E. J. ( 1996; ). Expression of the CopB outer membrane protein by Moraxella catarrhalis is regulated by iron and affects iron acquisition from transferrin and lactoferrin. Infect Immun 64, 2024–2030.
    [Google Scholar]
  2. Aebi, C., Lafontaine, E. R., Cope, L. D., Latimer, J. L., Lumbley, S. L., McCracken, G. H., Jr & Hansen, E. J. ( 1998; ). Phenotypic effect of isogenic uspA1 and uspA2 mutations on Moraxella catarrhalis 035E. Infect Immun 66, 3113–3119.
    [Google Scholar]
  3. Ala'Aldeen, D. A. A. & Borriello, S. P. ( 1996; ). The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14, 49–53.[CrossRef]
    [Google Scholar]
  4. Ala'Aldeen, D. A. A., Stevenson, P., Griffiths, E., Gorringe, A. R., Irons, L. I., Robinson, A., Hyde, S. & Borriello, S. P. ( 1994; ). Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design. Infect Immun 62, 2984–2990.
    [Google Scholar]
  5. Archambault, M., Labrie, J., Rioux, C. R., Dumas, F., Thibault, P., Elkins, C. & Jacques, M. ( 2003; ). Identification and preliminary characterization of a 75-kDa hemin- and hemoglobin-binding outer membrane protein of Actinobacillus pleuropneumoniae serotype 1. Can J Vet Res 67, 271–277.
    [Google Scholar]
  6. Bakri, F., Brauer, A. L., Sethi, S. & Murphy, T. F. ( 2002; ). Systemic and mucosal antibody response to Moraxella catarrhalis after exacerbations of chronic obstructive pulmonary disease. J Infect Dis 185, 632–640.[CrossRef]
    [Google Scholar]
  7. Bracken, C. S., Baer, M. T., Abdur-Rashid, A., Helms, W. & Stojiljkovic, I. ( 1999; ). Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol 181, 6063–6072.
    [Google Scholar]
  8. Campagnari, A. A., Shanks, K. L. & Dyer, D. W. ( 1994; ). Growth of Moraxella catarrhalis with human transferrin and lactoferrin: expression of iron-repressible proteins without siderophore production. Infect Immun 62, 4909–4914.
    [Google Scholar]
  9. Campagnari, A. A., Ducey, T. F. & Rebmann, C. A. ( 1996; ). Outer membrane protein B1, an iron-repressible protein conserved in the outer membrane of Moraxella (Branhamella) catarrhalis, binds human transferrin. Infect Immun 64, 3920–3924.
    [Google Scholar]
  10. Chen, D., McMichael, J. C., VanDerMeid, K. R., Hahn, D., Mininni, T., Cowell, J. & Eldridge, J. ( 1996; ). Evaluation of purified UspA from Moraxella catarrhalis as a vaccine in a murine model after active immunization. Infect Immun 64, 1900–1905.
    [Google Scholar]
  11. Cope, L. D., Yogev, R., Muller-Eberhard, U. & Hansen, E. J. ( 1995; ). A gene cluster involved in the utilization of both free heme and heme : hemopexin by Haemophilus influenzae type b. J Bacteriol 177, 2644–2653.
    [Google Scholar]
  12. Cope, L. D., Thomas, S. E., Hrkal, Z. & Hansen, E. J. ( 1998; ). Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect Immun 66, 4511–4516.
    [Google Scholar]
  13. Cornelissen, C. N. & Sparling, P. F. ( 1994; ). Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 14, 843–850.[CrossRef]
    [Google Scholar]
  14. Cripps, A. W. & Kyd, J. ( 2003; ). Bacterial otitis media: current vaccine development strategies. Immunol Cell Biol 81, 46–51.[CrossRef]
    [Google Scholar]
  15. Dagan, R. ( 2000; ). Treatment of acute otitis media – challenges in the era of antibiotic resistance. Vaccine 19 (Suppl. 1), S9–S16.[CrossRef]
    [Google Scholar]
  16. Dashper, S. G., Hendtlass, A., Slakeski, N., Jackson, C., Cross, K. J., Brownfield, L., Hamilton, R., Barr, I. & Reynolds, E. C. ( 2000; ). Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J Bacteriol 182, 6456–6462.[CrossRef]
    [Google Scholar]
  17. Faden, H. ( 2001; ). The microbiologic and immunologic basis for recurrent otitis media in children. Eur J Pediatr 160, 407–413.[CrossRef]
    [Google Scholar]
  18. Furano, K. & Campagnari, A. A. ( 2003; ). Inactivation of the Moraxella catarrhalis 7169 ferric uptake regulator increases susceptibility to the bactericidal activity of normal human sera. Infect Immun 71, 1843–1848.[CrossRef]
    [Google Scholar]
  19. Furano, K. & Campagnari, A. A. ( 2004; ). Identification of a hemin utilization protein of Moraxella catarrhalis (HumA). Infect Immun 72, 6426–6432.[CrossRef]
    [Google Scholar]
  20. Genco, C. A. & Dixon, D. W. ( 2001; ). Emerging strategies in microbial haem capture. Mol Microbiol 39, 1–11.[CrossRef]
    [Google Scholar]
  21. Gray-Owen, S. D. & Schryvers, A. B. ( 1996; ). Bacterial transferrin and lactoferrin receptors. Trends Microbiol 4, 185–191.[CrossRef]
    [Google Scholar]
  22. Hu, W.-G., Chen, J., Battey, J. F. & Gu, X.-X. ( 2000; ). Enhancement of clearance of bacteria from murine lungs by immunization with detoxified lipooligosaccharide from Moraxella catarrhalis conjugated to proteins. Infect Immun 68, 4980–4985.[CrossRef]
    [Google Scholar]
  23. Jiao, X., Hirano, T., Hou, Y. & Gu, X.-X. ( 2002; ). Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect Immun 70, 5982–5989.[CrossRef]
    [Google Scholar]
  24. Johnson, A. S., Gorringe, A. R., Mackinnon, F. G., Fox, A. J., Borrow, R. & Robinson, A. ( 1999; ). Analysis of the human Ig isotype response to lactoferrin binding protein A from Neisseria meningitidis. FEMS Immunol Med Microbiol 25, 349–354.[CrossRef]
    [Google Scholar]
  25. Karalus, R. & Campagnari, A. ( 2000; ). Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbes Infect 2, 547–559.[CrossRef]
    [Google Scholar]
  26. Lee, B. C. & Levesque, S. ( 1997; ). A monoclonal antibody directed against the 97-kilodalton gonococcal hemin-binding protein inhibits hemin utilization by Neisseria gonorrhoeae. Infect Immun 65, 2970–2974.
    [Google Scholar]
  27. Lewis, L. A., Gray, E., Wang, Y. P., Roe, B. A. & Dyer, D. W. ( 1997; ). Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis. Mol Microbiol 23, 737–749.[CrossRef]
    [Google Scholar]
  28. Lewis, L. A., Sung, M.-H., Gipson, M., Hartman, K. & Dyer, D. W. ( 1998; ). Transport of intact porphyrin by HpuAB, the hemoglobin-haptoglobin utilization system of Neisseria meningitidis. J Bacteriol 180, 6043–6047.
    [Google Scholar]
  29. Lewis, L. A., Gipson, M., Hartman, K., Ownbey, T., Vaughn, J. & Dyer, D. W. ( 1999; ). Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32, 977–989.[CrossRef]
    [Google Scholar]
  30. Luke, N. R. & Campagnari, A. A. ( 1999; ). Construction and characterization of Moraxella catarrhalis mutants defective in expression of transferrin receptors. Infect Immun 67, 5815–5819.
    [Google Scholar]
  31. Luke, N. R., Russo, T. A., Luther, N. & Campagnari, A. A. ( 1999; ). Use of an isogenic mutant constructed in Moraxella catarrhalis to identify a protective epitope of outer membrane protein B1 defined by monoclonal antibody 11C6. Infect Immun 67, 681–687.
    [Google Scholar]
  32. Masri, H. P. & Cornelissen, C. N. ( 2002; ). Specific ligand binding attributable to individual epitopes of gonococcal transferrin binding protein A. Infect Immun 70, 732–740.[CrossRef]
    [Google Scholar]
  33. McMichael, J. C. ( 2000; ). Vaccines for Moraxella catarrhalis. Vaccine 19 (Suppl. 1), S101–S107.[CrossRef]
    [Google Scholar]
  34. Ménard, R., Sansonetti, P. J. & Parsot, C. ( 1993; ). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175, 5899–5906.
    [Google Scholar]
  35. Morton, D. J., Whitby, P. W., Jin, H., Ren, Z. & Stull, T. L. ( 1999; ). Effect of multiple mutations in the hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae type b. Infect Immun 67, 2729–2739.
    [Google Scholar]
  36. Murphy, T. F. ( 1996; ). Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response. Microbiol Rev 60, 267–279.
    [Google Scholar]
  37. Ochsner, U. A., Johnson, Z. & Vasil, M. L. ( 2000; ). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146, 185–198.
    [Google Scholar]
  38. Otto, B. R., Verweij-van Vught, A. M. & MacLaren, D. M. ( 1992; ). Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18, 217–233.[CrossRef]
    [Google Scholar]
  39. Rokbi, B., Renauld-Mongenie, G., Mignon, M., Danve, B., Poncet, D., Chabanel, C., Caugant, D. A. & Quentin-Millet, M.-J. ( 2000; ). Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect Immun 68, 4938–4947.[CrossRef]
    [Google Scholar]
  40. Russo, T. A., Guenther, J. E., Wenderoth, S. & Frank, M. M. ( 1993; ). Generation of isogenic K54 capsule-deficient Escherichia coli strains through TnphoA-mediated gene disruption. Mol Microbiol 9, 357–364.[CrossRef]
    [Google Scholar]
  41. Schryvers, A. B. ( 1989; ). Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 29, 121–130.[CrossRef]
    [Google Scholar]
  42. Schryvers, A. B. & Stojiljkovic, I. ( 1999; ). Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32, 1117–1123.[CrossRef]
    [Google Scholar]
  43. Schryvers, A. B., Bonnah, R., Yu, R. H., Wong, H. & Retzer, M. (1998; ). Bacterial lactoferrin receptors. Adv Exp Med Biol 443, 123–133.
    [Google Scholar]
  44. Sengupta, S., Tripathi, J., Tandon, R., Raje, M., Roy, R. P., Basu, S. K. & Mukhopadhyay, A. ( 1999; ). Hemoglobin endocytosis in Leishmania is mediated through a 46-kDa protein located in the flagellar pocket. J Biol Chem 274, 2758–2765.[CrossRef]
    [Google Scholar]
  45. Stojiljkovic, I., Larson, J., Hwa, V., Anic, S. & So, M. ( 1996; ). HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol 178, 4670–4678.
    [Google Scholar]
  46. Stool, S. E. & Field, M. J. ( 1989; ). The impact of otitis media. Pediatr Infect Dis J 8, S11–S14.[CrossRef]
    [Google Scholar]
  47. Teele, D. W., Klein, J. O., Word, B. M. & 8 other authors ( 2001; ). Antimicrobial prophylaxis for infants at risk for recurrent acute otitis media. Vaccine 19, (Suppl. 1) S140–S143.
    [Google Scholar]
  48. Verduin, C. M., Hol, C., Fleer, A., van Dijk, H. & van Belkum, A. ( 2002; ). Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 15, 125–144.[CrossRef]
    [Google Scholar]
  49. Wandersman, C. & Stojiljkovic, I. ( 2000; ). Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3, 215–220.[CrossRef]
    [Google Scholar]
  50. West, D., Reddin, K., Matheson, M., Heath, R., Funnell, S., Hudson, M., Robinson, A. & Gorringe, A. ( 2001; ). Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect Immun 69, 1561–1567.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27820-0
Loading
/content/journal/micro/10.1099/mic.0.27820-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error