1887

Abstract

Polychlorinated biphenyls (PCBs) accumulate and persist in sediments posing a risk to human health and the environment. Highly chlorinated PCBs are reductively dechlorinated in anaerobic sediments and two bacteria, designated -17 and DF-1, from a novel phylogenetic group that reductively dechlorinate PCBs have recently been identified. However, there is a paucity of knowledge about the distribution, diversity and ecology of PCB-dechlorinating bacteria due to difficulty in obtaining pure cultures and the lack of detection by universal PCR 16S rRNA gene primer sets in sediments. A specific PCR primer was developed and optimized for detection of -17/DF-1 and other closely related bacteria in the environment. Using this primer set it was determined that bacteria of this group were enriched in sediment microcosms from Baltimore Harbour concurrent with active dechlorination of 2,2′,3,4,4′,5′-hexachlorobiphenyl. Additional 16S rRNA gene sequences that had high levels of similarity to described PCB dechlorinators were detected in sediments from the Elizabeth River tributary of Chesapeake Bay, which had confirmed PCB-dechlorinating activities. Phylogenetic comparison of these detected 16S rRNA gene sequences revealed a relatively diverse group of organisms within the dehalogenating that are distinct from the spp. Results from this study indicate that reductive PCB dechlorination activity may be catalysed by a previously undescribed group of micro-organisms that appear to be prevalent in PCB-impacted sites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27819-0
2005-06-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512039.html?itemId=/content/journal/micro/10.1099/mic.0.27819-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Nogales B., Golyshin P. N., Pieper D. H., Timmis K. N. 2002; Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol5:246–253[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller E., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  3. ATSDR 2000; Toxicological Profile for Polychlorinated Biphenyls Atlanta, GA: Agency for Toxic Substances and Disease Registry;
    [Google Scholar]
  4. Baker J., Mason R., Cornwell J., Ashley J., Halka J., Hill J. 1997; Spatial Mapping of Sedimentary Contaminants in the Baltimore Harbor/Patapsco River/Back River System. Final Report to Maryland Department of the Environment. UMCES97–142
    [Google Scholar]
  5. Bedard D. L., Quensen J. F. I. 1995; Microbial reductive dechlorination of polychlorinated biphenyls. In Microbial Transformation and Degradation of Toxic Organic Chemicals pp127–216 Edited by Young L. Y., Cerniglia C. E.. New York: Wiley;
    [Google Scholar]
  6. Berkaw M., Sowers K. R., May H. D. 1996; Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl Environ Microbiol62:2534–2539
    [Google Scholar]
  7. Brown J. F. Jr, Bedard D. L., Brennan M. J., Carnahan J. C., Feng H., Wagner R. E. 1987; Polychlorinated biphenyl dechlorination in aquatic sediments. Science236:709–712[CrossRef]
    [Google Scholar]
  8. Chun J. 1995; Computer-assisted classification and identification of actinomycetes PhD thesis University of Newcastle upon Tyne;
    [Google Scholar]
  9. Cupples A. M., Spormann A. M., Mccarty P. L. 2003; Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol69:953–959[CrossRef]
    [Google Scholar]
  10. Cutter L., Sowers K. R., May H. D. 1998; Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Appl Environ Microbiol64:2966–2969
    [Google Scholar]
  11. Cutter L. A., Watts J. E., Sowers K. R., May H. D. 2001; Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol3:699–709[CrossRef]
    [Google Scholar]
  12. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes characterization of a gene coding for 16S-ribosomal RNA. Nucleic Acids Res19:7843–7853
    [Google Scholar]
  13. Felsenstein J. 1993; phylip (Phylogeny Inference Package Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  14. Fennell D. E., Nijenhuis I., Wilson S. F., Zinder S. H, Häggblom M. M. 2004; Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol38:2075–2081[CrossRef]
    [Google Scholar]
  15. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science155:279–284[CrossRef]
    [Google Scholar]
  16. Hendrickson E. R., Payne J. A., Young R. M., Starr M. G., Perry M. P., Fahnestock S., Ellis D. E., Ebersole R. C. 2002; Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol68:485–495[CrossRef]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp21–132 Edited by Munro H. N.. New York: Academic Press;
    [Google Scholar]
  18. Kluge A. G., Farris F. S. 1969; Quantitative phletics and the evolution of annurans. Syst Zool18:1–32[CrossRef]
    [Google Scholar]
  19. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal sequences for phylogenetic analysis. Proc Natl Acad Sci U S A82:6955–6959[CrossRef]
    [Google Scholar]
  20. Loffler F. E., Sun Q., Tiedje J. M. 2000; 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol66:1369[CrossRef]
    [Google Scholar]
  21. Maidak B. L., Cole J. R., Lilburn T. G.. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res28:173–174[CrossRef]
    [Google Scholar]
  22. Miller G. S., Milliken C. E., Sowers K. R., May H. D. 2005; Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Environ Sci Technol39:2631–2635[CrossRef]
    [Google Scholar]
  23. Milliken C. E., Meier G. P., Watts J. E., Sowers K. R., May H. D. 2004; Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi. Appl Environ Microbiol70:385–392[CrossRef]
    [Google Scholar]
  24. Pulliam Holoman T. R., Elberson M. A., Cutter L. A., May H. D., Sowers K. R. 1998; Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol64:3359–3367
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  26. Suzuki M. T., Giovannoni S. J. 1996; Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol62:625–630
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  28. Von Wintzingerode F., Gobel U. B., Stackebrandt E. 1997; Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev21:213–229[CrossRef]
    [Google Scholar]
  29. Watts J. E., Wu Q., Schreier S. B., May H. D., Sowers K. R. 2001; Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol3:710–719[CrossRef]
    [Google Scholar]
  30. Watts J. E. M., Fagervold S. K., Miller G. S., Milliken C. E., May H. D., Sowers K. R. 2004; Microbial reductive dechlorination of organochloride pollutants in the marine environment. Mar Biotechnol6 (suppl. 1:S378–S386[CrossRef]
    [Google Scholar]
  31. Wiegel J., Wu Q. 2000; Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol32:1–17[CrossRef]
    [Google Scholar]
  32. Wu Q. Z., Sowers K. R., May H. D. 1998; Microbial reductive dechlorination of aroclor 1260 in anaerobic slurries of estuarine sediments. Appl Environ Microbiol64:1052–1058
    [Google Scholar]
  33. Wu Q., Sowers K. R., May H. D. 2000; Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Appl Environ Microbiol66:49–53[CrossRef]
    [Google Scholar]
  34. Wu Q., Milliken C. E., Meier G. P., Watts J. E., Sowers K. R., May H. D. 2002a; Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ Sci Technol36:3290–3294[CrossRef]
    [Google Scholar]
  35. Wu Q., Watts J. E. M., Sowers K. R., May H. D. 2002b; Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol68:807–812[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27819-0
Loading
/content/journal/micro/10.1099/mic.0.27819-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error