1887

Abstract

Microcystins (MCs) are toxic heptapeptides which are synthesized by the filamentous cyanobacterium and other genera via non-ribosomal peptide synthesis. MCs share the common structure cyclo(--ala--x--erythro--iso-aspartic acid--z-adda--Glu--methyl-dehydroalanine) [Adda; (2, 3, 8, 9)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid], in which numerous MC variants have been reported. In general, the variation in structure is due to different amino acid residues in positions 7, 2 and 4 within the MC molecule, which are thought to be activated by the adenylation domains Ad1, Ad1 and Ad, respectively. It was the aim of the study (i) to identify MC ecotypes that differed in the production of specific MC variants and (ii) to correlate the genetic variation within adenylation domains with the observed MC variants among 17 strains. Comparison of the sequences of Ad1 revealed two distinctive Ad-genotypes differing in base pair composition and the insertion of an -methyl transferase (NMT) domain. The Ad1 genotype with NMT (2854 bp) correlated with -methyl-dehydroalanine and the Ad1 genotype without NMT (1692 bp) correlated with dehydrobutyrine in position 7. Within Ad1, a lower genetic variation (0–4 %) and an exclusive correlation between one Ad-genotype and homotyrosine as well as another Ad-genotype and arginine in position 2 was found. The sequences of Ad were found to be highly similar (0–1 % dissimilarity) and all strains contained arginine in position 4. The results on adenylation domain polymorphism do provide insights into the evolutionary origin of adenylation domains in and may be combined with ecological research in order to provide clues about the abundance of genetically defined MC ecotypes in nature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27779-0
2005-05-01
2024-11-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511525.html?itemId=/content/journal/micro/10.1099/mic.0.27779-0&mimeType=html&fmt=ahah

References

  1. Blom J. F., Robinson J. A., Jüttner F. 2001; High grazer toxicity of [d-Asp3, (E)-Dhb7]microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon 39:1923–1932 [CrossRef]
    [Google Scholar]
  2. Carmichael W. W., Beasly V., Bunner D. L. 11 other authors; 1988; Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae. Toxicon 26:971–973 [CrossRef]
    [Google Scholar]
  3. Challis G. L., Ravel J., Townsend C. A. 2000; Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224 [CrossRef]
    [Google Scholar]
  4. Christiansen G., Fastner J., Erhard M., Dittmann E, Börner T. 2003; Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572 [CrossRef]
    [Google Scholar]
  5. Conti E., Stachelhaus T., Marahiel M. A., Brick P. 1997; Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183 [CrossRef]
    [Google Scholar]
  6. Erhard M., Jungblut P, von Döhren H. 1997; Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol 15:906–909 [CrossRef]
    [Google Scholar]
  7. Fastner J., Erhard M., Carmichael W. W., Sun F., Rinehart K. L., Chorus I, Rönicke H. 1999; Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch Hydrobiol 145:147–163
    [Google Scholar]
  8. Felsenstein J. 1993 phylip – phylogeny inference package, version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  9. Gumpenberger M. 2004 Phänotypische und genetische Charakterisierung toxischer Cyanobakterien aus der Gattung Planktothrix spp MSc thesis University of Salzburg; Austria (in German):
    [Google Scholar]
  10. Henriksen P., Moestrup O. 1997; Seasonal variations in microcystin contents of Danish cyanobacteria. Nat Toxins 5:99–106 [CrossRef]
    [Google Scholar]
  11. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Kurmayer R., Dittmann E., Fastner J., Chorus I. 2002; Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany: Microb Ecol 43:107–118 [CrossRef]
    [Google Scholar]
  14. Kurmayer R., Christiansen G., Chorus I. 2003; The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69:787–795 [CrossRef]
    [Google Scholar]
  15. Kurmayer R., Christiansen G., Fastner J, Börner T. 2004; Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841 [CrossRef]
    [Google Scholar]
  16. Lawton L. A., Edwards C., Codd G. A. 1994; Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530 [CrossRef]
    [Google Scholar]
  17. Luukkainen R., Sivonen K., Namikoshi M., Färdig M., Rinehart K. L, Niemelä S. I. 1993; Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a new microcystin. Appl Environ Microbiol 59:2204–2209
    [Google Scholar]
  18. Marahiel M. A., Stachelhaus T., Mootz H. D. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674 [CrossRef]
    [Google Scholar]
  19. Mikalsen B., Boison G., Skulberg O. M., Fastner J., Davies W., Gabrielsen T. M., Rudi K., Jakobsen K. S. 2003; Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785 [CrossRef]
    [Google Scholar]
  20. Moffitt M. C., Neilan B. A. 2004; Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362 [CrossRef]
    [Google Scholar]
  21. Mur L. R., Skulberg O. M., Utkilen H. 1999; Cyanobacteria in the environment. In Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management pp 15–40 Edited by Chorus I., Bartram J. London & New York: E. & F. N. Spon;
    [Google Scholar]
  22. Oliver R. L., Ganf G. G. 2000; Freshwater blooms. In The Ecology of Cyanobacteria: their Diversity in Time and Space pp 149–194 Edited by Whitton B. A., Potts M. Dordrecht: Kluwer Academic;
    [Google Scholar]
  23. Rapala J., Sivonen K., Lyra C., Niemelä S. I. 1997; Variation of microcystins, cyanobacterial hepatotoxins. In Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 632206–2212
    [Google Scholar]
  24. Rinehart K. L., Namikoshi M., Choi B. W. 1994; Structure and biosynthesis of toxins from blue-green algae (cyanobacteria. J Appl Phycol 6:159–176 [CrossRef]
    [Google Scholar]
  25. Rippka R. 1988; Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27
    [Google Scholar]
  26. Rouhiainen L., Paulin L., Suomalainen S., Biukema W., Haselkorn R., Sivonen K, Hyytiäinen H. 2000; Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167 [CrossRef]
    [Google Scholar]
  27. Rouhiainen L., Vakkilainen T., Siemer B. L., Buikema W., Haselkorn R., Sivonen K. 2004; Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70:686–692 [CrossRef]
    [Google Scholar]
  28. Sano T., Kaya K. 1995; A 2-amino-2-butenoic acid (Dhb)-containing microcystin isolated from Oscillatoria agardhii. Tetrahedron Lett 36:8603–8606 [CrossRef]
    [Google Scholar]
  29. Sano T., Kaya K. 1998; Two new (E)-2-amino-2-butenoic acid (Dhb)-containing microcystins isolated from Oscillatoria agardhii. Tetrahedron 54:463–470 [CrossRef]
    [Google Scholar]
  30. Scheffer M., Rinaldi S., Gragnani A., Mur L. R., van Nes E. H. 1997; On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272–282 [CrossRef]
    [Google Scholar]
  31. Sivonen K., Jones G. 1999; Cyanobacterial toxins. In Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management pp 41–112 Edited by Chorus I., Bartram J. London & New York: E. & F. N. Spon;
    [Google Scholar]
  32. Stachelhaus T., Mootz H. D., Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505 [CrossRef]
    [Google Scholar]
  33. Stoesser G., Baker W., van den Broek A. 13 other authors 2003; The EMBL Nucleotide Sequence Database: major new developments. Nucleic Acids Res 31:17–22 [CrossRef]
    [Google Scholar]
  34. Suda S., Watanabe M. M., Otsuka S., Mahakahant A., Yongmanitchai W., Nopartnaraporn N., Liu Y., Day J. G. 2002; Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595 [CrossRef]
    [Google Scholar]
  35. Tanabe Y., Kaya K., Watanabe M. M. 2004; Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteriaMicrocystis spp. J Mol Evol 58:633–641 [CrossRef]
    [Google Scholar]
  36. Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A. 2000; Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.27779-0
Loading
/content/journal/micro/10.1099/mic.0.27779-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error