Role of RpoS and MutS in phase variation of sp. PCL1171 Free

Abstract

sp. strain PCL1171 undergoes reversible colony phase variation between opaque phase I and translucent phase II colonies, which is dependent on spontaneous mutations in the regulatory genes and . Mutation of the gene and constitutive expression of increases the frequency at which mutants appear 1000- and 10-fold, respectively. Experiments were designed to study the relationship between , and . These studies showed that (i) a functional system is required for the expression of , (ii) RpoS suppresses the expression of and therefore increases the frequency of mutants, and (iii) upon mutation of and , the expression of is increased. Mutation of abolishes suppression of expression in stationary growth, suggesting that additional -dependent factors are involved in this suppression. In conclusion, inefficient mutation repair via MutS, of which the expression is influenced by / itself and by in combination with other factors, contributes to the high frequency of mutations accumulating in /. The role of RpoS in the growth advantage of a mutant was analysed, and mutation of only reduced the length of the lag phase, but did not affect the growth rate, suggesting a role for both RpoS and a reduction of metabolic load in the growth advantage of a mutant.

Keyword(s): RT-PCR, real-time PCR
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27777-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511403.html?itemId=/content/journal/micro/10.1099/mic.0.27777-0&mimeType=html&fmt=ahah

References

  1. Achouak W., Conrod S., Cohen V., Heulin T. 2004; Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonisation strategy. Mol Plant Microbe Interact 17:872–879 [CrossRef]
    [Google Scholar]
  2. Bull C. T., Duffy B., Voisard C., Defago G., Keel C., Haas D. 2001; Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie Van Leeuwenhoek 79:327–336 [CrossRef]
    [Google Scholar]
  3. Chancey S. T., Wood D. W., Pierson E. A., Pierson L. S. III 2002; Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314 [CrossRef]
    [Google Scholar]
  4. Duffy B., Defago G. 1995; Influence of cultural conditions on spontaneous mutations in P. fluorescens CHAO. Phytopathology 85: 1146
    [Google Scholar]
  5. Duffy B. K., Defago G. 2000; Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150 [CrossRef]
    [Google Scholar]
  6. Giraud A., Radman M., Matic I., Taddei F. 2001; The rise and fall of mutator bacteria. Curr Opin Microbiol 4:582–585 [CrossRef]
    [Google Scholar]
  7. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237 [CrossRef]
    [Google Scholar]
  8. Hrabak E. M., Willis D. K. 1993; Involvement of the lemA gene in production of syringomycin and protease by Pseudomonas syringae pv.syringae . Mol Plant Microbe Interact 6:368–375 [CrossRef]
    [Google Scholar]
  9. Kang B. R., Cho B. H., Anderson A. J., Kim Y. C. 2004; The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137–143 [CrossRef]
    [Google Scholar]
  10. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  11. Kivisaar M. 2003; Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5:814–827 [CrossRef]
    [Google Scholar]
  12. Laville J., Voisard C., Keel C., Maurhofer M., Defago G., Haas D. 1992; Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A 89:1562–1566 [CrossRef]
    [Google Scholar]
  13. Loewen P. C., Hu B., Strutinsky J., Sparling R. 1998; Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44:707–717 [CrossRef]
    [Google Scholar]
  14. Modrich P. 1991; Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253 [CrossRef]
    [Google Scholar]
  15. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319 [CrossRef]
    [Google Scholar]
  16. Rich J. J., Kinscherf T. G., Kitten T., Willis D. K. 1994; Genetic evidence that the gacA gene encodes the cognate response regulator for thelemA sensor in Pseudomonas syringae . J Bacteriol 176:7468–7475
    [Google Scholar]
  17. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sanchez-Contreras M., Martin M., Villacieros M., O'Gara F., Bonilla I., Rivilla R. 2002; Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184:1587–1596 [CrossRef]
    [Google Scholar]
  19. Saunders N. J., Moxon E. R., Gravenor M. B. 2003; Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiology 149:485–495 [CrossRef]
    [Google Scholar]
  20. Schmidli-Sacherer P., Keel C., Defago G. 1997; The global regulator GacA of Pseudomonas fluorescens CHAO is required for suppression of root diseases in dicotyledons but not inGramineae . Plant Pathol 46:80–90 [CrossRef]
    [Google Scholar]
  21. Schmidt-Eisenlohr H., Gast A., Baron C. 2003; Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl Environ Microbiol 69:1817–1826 [CrossRef]
    [Google Scholar]
  22. Simon R., O'Connell M., Labes M., Puhler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol 118:640–659
    [Google Scholar]
  23. Tsui H. C., Feng G., Winkler M. E. 1997; Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators ofEscherichia coli K-12. J Bacteriol 179:7476–7487
    [Google Scholar]
  24. van den Broek D., Chin-A-Woeng T. F. C., Eijkemans K., Mulders I. H., Bloemberg G. V., Lugtenberg B. J. J. 2003; Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant Microbe Interact 16:1003–1012 [CrossRef]
    [Google Scholar]
  25. van den Broek D., Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J. 2005; Molecular nature of spontaneous modifications in gacS which cause colony phase variation inPseudomonassp. PCL1171.. J Bacteriol 187:593–600 [CrossRef]
    [Google Scholar]
  26. Whistler C. A., Corbell N. A., Sarniguet A., Ream W., Loper J. E. 1998; The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641
    [Google Scholar]
  27. Wolk C. P., Cai Y., Panoff J. M. 1991; Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A 88:5355–5359 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27777-0
Loading
/content/journal/micro/10.1099/mic.0.27777-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed