The leucyl aminopeptidase from is an allosteric enzyme Free

Abstract

This study describes the cloning, genetic analysis and biochemical characterization of a leucyl aminopeptidase (LAP) from . A gene encoding LAP was cloned from and the expressed 55 kDa protein displayed homology to aminopeptidases from Gram-negative bacteria, plants and mammals. This LAP demonstrated amidolytic activity against -leucine--nitroanilide. Optimal activity was observed at pH 8·0 and 45 °C, with of 232 μmol min (mg protein) and of 0·65 mM. The data suggest that LAP could be allosteric ( =2·27), with regulatory homohexamers, and its activity was inhibited by ion chelators and enhanced by divalent manganese, cobalt and nickel cations. Bestatin inhibited both LAP activity (IC=49·9 nM) and growth . The results point to the potential use of LAP as a drug target to develop novel anti- agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27767-0
2005-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512017.html?itemId=/content/journal/micro/10.1099/mic.0.27767-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T. 20 other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180 [CrossRef]
    [Google Scholar]
  2. Björkholm B., Sjölund M., Falk P. G., Berg O. G., Engstrand L., Andersson D. I. 2001; Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A 98:14607–14612 [CrossRef]
    [Google Scholar]
  3. Booth M., Jennings V., Fhaolain I. N., O'Cuinn G. 1990; Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. J Dairy Res 57:245–254 [CrossRef]
    [Google Scholar]
  4. Carpenter F. H., Vahl J. M. 1973; Leucine aminopeptidase (bovine lens). Mechanism of activation by Mg2+ and Mn2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content. J Biol Chem 248:294–304
    [Google Scholar]
  5. Cheng N., Xie J. S., Zhang M. Y., Shu C., Zhu D. X. 2003; A specific anti-Helicobacter pylori agent NE2001: synthesis and its effect on the growth ofH. pylori . Bioorg Med Chem Lett 13:2703–2707 [CrossRef]
    [Google Scholar]
  6. Cottrell G. S., Hooper N. M., Turner A. J. 2000; Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese (II)-dependent enzyme. Biochemistry 39:15121–15128 [CrossRef]
    [Google Scholar]
  7. Cover T. L., Blaser M. J. 1996; Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Int Med 41:85–117
    [Google Scholar]
  8. Dixon M., Webb E. C. 1979 Enzymes, 3rd edn. London: Longman;
    [Google Scholar]
  9. D'Souza V. M., Holz R. C. 1999; The methionyl aminopeptidase from Escherichia coli can function as an iron (II) enzyme. Biochemistry 38:11079–11085 [CrossRef]
    [Google Scholar]
  10. Ellis K. J., Morrison J. F. 1982; Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87:405–426
    [Google Scholar]
  11. Goldberg A. L., Dice J. F. 1974; Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43:835–869 [CrossRef]
    [Google Scholar]
  12. Goldberg A. L., John A. C. S. 1976; Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu Rev Biochem 45:747–803 [CrossRef]
    [Google Scholar]
  13. Gu Y. G., Walling L. L. 2002; Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur J Biochem 269:1630–1640 [CrossRef]
    [Google Scholar]
  14. Hopkins R. J., Girardi L. S., Turney E. A. 1996; Relationship between Helicobacter pylori eradication and reduced duodenal and gastic ulcer recurrence: a review. Gastroenterology 110:1244–1252 [CrossRef]
    [Google Scholar]
  15. Howarth J., Lloyd D. G. 2000; Simple 1,2-aminoalcohols as strain-specific antimalarial agents. J Antimicrob Chemother 46:625–627 [CrossRef]
    [Google Scholar]
  16. Kim H., Lipscomb W. N. 1993; Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by X-ray crystallography. Proc Natl Acad Sci U S A 90:5006–5010 [CrossRef]
    [Google Scholar]
  17. Knowles G. 1993; The effects of arphamenine-A, an inhibitor of aminopeptidases, on in-vitro growth of Trypanosoma brucei brucei. J Antimicrob Chemother 32:172–174 [CrossRef]
    [Google Scholar]
  18. Kreiss C., Blum A. L., Malfertheiner P. 1995; Peptic ulcer pathogenesis. Curr Opin Gastroenterol 11:25–31 [CrossRef]
    [Google Scholar]
  19. Lazdunski A. 1989; Peptidase and protease of Escherichia coli and Salmonella typhimurium . FEMS Microbiol Rev 63:265–276
    [Google Scholar]
  20. Malfertheiner P., Megraud F., O'Morain C., Hungin A. P., Jones R., Axon A., Graham D. Y., Tytgat G. 2002; Current concepts in the management of Helicobacter pylori infection – the Maastricht 2-2000 Consensus Report. Aliment Pharmacol Ther 16:167–180
    [Google Scholar]
  21. Miller C. G. 1975; Peptidases and proteases of Escherichia coli and Salmonella typhimurium . Annu Rev Microbiol 29:485–504 [CrossRef]
    [Google Scholar]
  22. Morty R. E., Morehead J. 2002; Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J Biol Chem 277:26057–26065 [CrossRef]
    [Google Scholar]
  23. Müller K. D., von Recklinghausen G., Heintschel von Heinegg E., Ansorg R. 1991; Flocculation of venereal disease research laboratory reagent by Helicobacter pylori. Eur J Microbiol Infect Dis 10:768–770 [CrossRef]
    [Google Scholar]
  24. Nankya-Kitaka M. F., Curley G. P., Gavigan C. S., Bell A., Dalton J. P. 1998; Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res 84:552–558 [CrossRef]
    [Google Scholar]
  25. Niven G. W. 1991; Purification and characterization of aminopeptidase A from Lactococcus lactis subsp.lactis NCDO712. J Gen Microbiol 137:1207–1212 [CrossRef]
    [Google Scholar]
  26. Rawlings N. D., Barrett A. J. 1995; Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228
    [Google Scholar]
  27. Rogers A. H., Gunadi A., Gully N. J., Zilm P. S. 1998; An aminopeptidase nutritionally important to Fusobacterium nucleatum. Microbiology 144:1807–1813 [CrossRef]
    [Google Scholar]
  28. Sakakibara T., Ito K., Irie Y., Hagiwara T., Sakai Y., Hayashi M., Kishi H., Sakamoto M., Suzuki M. 1983; Toxicological studies on bestatin. I. Acute toxicity test in mice, rats and dogs. Jpn J Antibiot 36:2971–2984
    [Google Scholar]
  29. Smid E. J., Poolman B., Konings W. N. 1991; Casein utilization by lactococci. Appl Environ Microbiol 57:2447–2453
    [Google Scholar]
  30. Tan P. S. T., Konings W. N. 1990; Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol 56:526–532
    [Google Scholar]
  31. Taylor A. 1993; Aminopeptidases: structure and function. FASEB J 7:290–298
    [Google Scholar]
  32. Taylor A., Peltier C. Z., Torre F. J., Hakamian N. 1993; Inhibition of bovine lens leucine aminopeptidases by bestatin: number of binding sites and slow binding of this inhibitor. Biochemistry 32:784–790 [CrossRef]
    [Google Scholar]
  33. Thierry G., Janine R. B. 1996; Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344 [CrossRef]
    [Google Scholar]
  34. Tomb J. F., White O., Kerlavage A. R. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  35. Van Wart H. E., Lin S. H. 1981; Metal binding stoichiometry and mechanism of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochemistry 20:5682–5689 [CrossRef]
    [Google Scholar]
  36. Walker K. W., Bradshaw R. A. 1998; Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity?. Protein Sci 7:2684–2687 [CrossRef]
    [Google Scholar]
  37. Wilkes S. H., Prescott J. M. 1985; The slow, tight binding of bestatin and amastatin to aminopeptidases. J Biol Chem 260:13154–13162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27767-0
Loading
/content/journal/micro/10.1099/mic.0.27767-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed