1887

Abstract

NADP-dependent glutamate dehydrogenase (NADP-GDH) mediates fungal ammonium assimilation through reductive synthesis of glutamate from 2-oxoglutarate. By virtue of its position at the interface of carbon and nitrogen metabolism, biosynthetic NADP-GDH is a potential candidate for metabolic control. In order to facilitate characterization, a new and effective dye-affinity method was devised to purify NADP-GDH from two aspergilli, and . The NADP-GDH was characterized at length and its kinetic interaction constants with glutamate ( 34·7 mM) and ammonium ( 1·05 mM; 0·4 mM) were consistent with an anabolic role. Isophthalate, 2-methyleneglutarate and 2,4-pyridinedicarboxylate were significant inhibitors, with respective values of 6·9, 9·2 and 202·0 μM. The enzyme showed allosteric properties and a sigmoid response ( =2·5) towards 2-oxoglutarate saturation. The co-operative behaviour was a feature common to NADP-GDH from , and . NADP-GDH may therefore be a crucial determinant in adjusting 2-oxoglutarate flux between the tricarboxylic acid cycle and glutamate biosynthesis in aspergilli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27751-0
2005-05-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511409.html?itemId=/content/journal/micro/10.1099/mic.0.27751-0&mimeType=html&fmt=ahah

References

  1. Agrawal, A. K. & Rao, V. K. M. ( 1983; ). Affinity chromatographic purification of glutamate dehydrogenase of Aspergillus ochraceus. Indian J Exp Biol 21, 553–556.
    [Google Scholar]
  2. Aguirre, J. & Hansberg, W. ( 1988; ). A rapid and easy method for the purification of the Neurospora crassa NADP-specific glutamate dehydrogenase. Fungal Genet Newsl 35, 5–6.
    [Google Scholar]
  3. Baars, J. J. P., Op den Camp, H. J. M., van Hoek, A. H. A. M., van der Drift, C., Van Griensven, L. J. L. D., Visser, J. & Vogels, G. D. ( 1995; ). Purification and characterization of NADP-dependent glutamate dehydrogenase from the commercial mushroom Agaricus bisporus. Curr Microbiol 30, 211–217.[CrossRef]
    [Google Scholar]
  4. Baker, P. J., Britton, K. L., Engel, P. C., Farrants, G. W., Lilley, K. S., Rice, D. W. & Stillman, T. J. ( 1992; ). Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 12, 75–86.[CrossRef]
    [Google Scholar]
  5. Bennett, J. W. ( 1998; ). Mycotechnology: the role of fungi in biotechnology. J Biotechnol 66, 101–107.[CrossRef]
    [Google Scholar]
  6. Blumenthal, K. M. & Smith, E. L. ( 1973; ). Nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase of Neurospora. I. Isolation, subunits, amino acid composition, sulfhydryl groups, and identification of a lysine residue reactive with pyridoxal phosphate and N-ethylmaleimide. J Biol Chem 248, 6002–6008.
    [Google Scholar]
  7. Bogati, M. S., Posci, I., Maticsek, J., Boross, P., Tozser, J. & Szentirmai, A. ( 1996; ). NADP-specific glutamate dehydrogenase of Penicillium chrysogenum has a homohexamer structure. J Basic Microbiol 36, 371–375.[CrossRef]
    [Google Scholar]
  8. Bohme, H.-J., Kopperschlager, G., Schulz, J. & Hofmann, E. ( 1972; ). Affinity chromatography of phosphofructokinase using Cibacron blue F3G-A. J Chromatogr 69, 209–214.[CrossRef]
    [Google Scholar]
  9. Botton, B. & Msatef, Y. ( 1983; ). Purification and properties of NADP-dependent glutamate dehydrogenase from Sphaerostilbe repens. Physiol Plant 59, 428–444.[CrossRef]
    [Google Scholar]
  10. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  11. Brunhuber, N. M. W. & Blanchard, J. S. ( 1994; ). The biochemistry and enzymology of amino acid dehydrogenases. Crit Rev Biochem Mol Biol 29, 415–467.[CrossRef]
    [Google Scholar]
  12. Cardoza, R. E., Moralejo, F. J., Gutierrez, S., Casqueiro, J., Fierro, F. & Martin, J. F. ( 1998; ). Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr Genet 34, 50–59.[CrossRef]
    [Google Scholar]
  13. Caughey, W. S., Smiley, J. D. & Hellerman, L. ( 1956; ). l-Glutamic acid dehydrogenase: structural requirements for substrate competition: effect of thyroxine. J Biol Chem 224, 591–607.
    [Google Scholar]
  14. Cooper, T. G. ( 2004; ). Integrated regulation of the nitrogen-carbon interface. In Topics in Current Genetics, vol. 7, pp. 225–257. Edited by J. Winderickx & P. M. Taylor. Berlin & Heidelberg: Springer.
  15. Cunliffe, D., Leason, M., Parkin, D. & Lea, P. ( 1983; ). The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry 22, 1357–1360.[CrossRef]
    [Google Scholar]
  16. DeLuna, A., Avendano, A., Riego, L. & Gonzalez, A. ( 2001; ). NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276, 43775–43783.[CrossRef]
    [Google Scholar]
  17. Denton, T. T., Thompson, C. M. & Cooper, J. L. ( 2001; ). Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases. Anal Biochem 298, 265–274.[CrossRef]
    [Google Scholar]
  18. Diez, B., Mellado, E., Rodriguez, M., Bernasconi, E. & Barredo, J. L. ( 1999; ). The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol 52, 196–207.[CrossRef]
    [Google Scholar]
  19. Ellis, K. J. & Morrison, J. F. ( 1982; ). Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87, 405–426.
    [Google Scholar]
  20. Fincham, J. R. S. ( 1962; ). Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa. J Mol Biol 4, 257–274.[CrossRef]
    [Google Scholar]
  21. Fincham, J. R. S., Kinsey, J. A., Fuentes, A. M., Cummings, N. J. & Connerton, I. F. ( 2000; ). The Neurospora am gene and NADP-specific glutamate dehydrogenase: mutational sequence changes and functional effects – more mutants and a summary. Genet Res 76, 1–10.[CrossRef]
    [Google Scholar]
  22. Fisher, H. F., Maniscalco, S. J. & Tally, J. ( 2001; ). Stabilization of noncovalent intermediates in enzymatically catalyzed reactions. Biochem Biophys Res Commun 287, 343–347.[CrossRef]
    [Google Scholar]
  23. Gabriel, O. & Gersten, D. M. ( 1992; ). Staining for enzymatic activity after gel electrophoresis, I. Anal Biochem 203, 1–21.[CrossRef]
    [Google Scholar]
  24. Gerhart, J. C. & Pardee, A. B. ( 1963; ). The effect of feedback inhibitor, CTP, on subunit interactions in aspartate transcarbamylase. Cold Spring Harbor Symp Quant Biol 28, 491–496.[CrossRef]
    [Google Scholar]
  25. Hawkins, A. R., Gurr, S. J., Montague, P. & Kinghorn, J. R. ( 1989; ). Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Mol Gen Genet 218, 105–111.[CrossRef]
    [Google Scholar]
  26. Holmes, A. R., Collings, A., Farnden, K. J. F. & Shepherd, M. G. ( 1989; ). Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol 135, 1423–1430.
    [Google Scholar]
  27. Hudson, R. C. & Daniel, R. M. ( 1993; ). l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol 106B, 767–792.
    [Google Scholar]
  28. Kinghorn, J. R. & Pateman, J. A. ( 1973; ). NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J Gen Microbiol 78, 39–46.[CrossRef]
    [Google Scholar]
  29. Kumar, S., Punekar, N. S., SatyaNarayan, V. & Venkatesh, K. V. ( 2000; ). Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng 67, 575–584.[CrossRef]
    [Google Scholar]
  30. Kusnan, M. B., Berger, M. G. & Fock, H. P. ( 1987; ). The involvement of glutamine synthetase/glutamate synthase in ammonia assimilation by Aspergillus nidulans. J Gen Microbiol 133, 1235–1242.
    [Google Scholar]
  31. Kusnan, M. B., Klug, K. & Fock, H. P. ( 1989; ). Ammonia assimilation by Aspergillus nidulans: [15N]ammonia study. J Gen Microbiol 135, 729–738.
    [Google Scholar]
  32. MacRae, I. J., Segel, I. H. & Fisher, A. J. ( 2002; ). Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum. Nat Struct Biol 9, 945–949.[CrossRef]
    [Google Scholar]
  33. Martin, F., Msatef, Y. & Botton, B. ( 1983; ). Nitrogen assimilation in mycorrhizas. Purification and properties of the nicotinamide dinucleotide phosphate-specific glutamate dehydrogenase of the ectomycorrhizal fungus Cenococcum geophilum Fr. New Phytol 93, 415–422.[CrossRef]
    [Google Scholar]
  34. Martin, F., Stewart, G. R., Genetet, I. & Mourot, B. ( 1988; ). The involvement of glutamate dehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete Cenococcum geophylum. New Phytol 110, 541–550.[CrossRef]
    [Google Scholar]
  35. Marx, A., Eikmanns, B. J., Sahm, H., de Graaf, A. A. & Eggeling, L. ( 1999; ). Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1, 35–48.[CrossRef]
    [Google Scholar]
  36. Marzluf, G. A. ( 1997; ). Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61, 17–32.
    [Google Scholar]
  37. Meixner-Monori, B., Kubicek, C. P., Habison, A., Kubicek-Pranz, E. M. & Röhr, M. ( 1985; ). Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J Bacteriol 161, 265–271.
    [Google Scholar]
  38. Mora, J. ( 1990; ). Glutamine metabolism and cycling in Neurospora crassa. Microbiol Rev 54, 293–304.
    [Google Scholar]
  39. Nielsen, P. A., Jaroszewski, J. W., Norrby, P.-O. & Liljefors, T. ( 2001; ). An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution. J Am Chem Soc 123, 2003–2006.[CrossRef]
    [Google Scholar]
  40. Nissen, T. L., Kielland-Brandt, M. C., Nielsen, J. & Villadsen, J. ( 2000; ). Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonia assimilation. Metab Eng 2, 69–77.[CrossRef]
    [Google Scholar]
  41. Pedersen, H., Carlsen, M. & Nielsen, J. ( 1999; ). Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl Environ Microbiol 65, 11–19.
    [Google Scholar]
  42. Perysinakis, A., Kinghorn, J. R. & Drainas, C. ( 1994; ). Biochemical and genetical studies of NADP-specific glutamate dehydrogenase in the fission yeast Schizosaccharomyces pombe. Curr Genet 26, 315–320.[CrossRef]
    [Google Scholar]
  43. Ruijter, G. J. G., Kubicek, C. P. & Visser, J. ( 2002; ). Production of organic acids by fungi. In The Mycota. X. Industrial Applications, pp. 213–230. Edited by H. D. Osiewacz. Berlin & Heidelberg: Springer.
  44. Schwartz, T., Kusnan, M. B. & Fock, H. P. ( 1991; ). The involvement of glutamate dehydrogenase and glutamine synthetase/glutamate synthase in ammonia assimilation by the basidiomycete fungus Strophia semiglobata. J Gen Microbiol 137, 2253–2258.[CrossRef]
    [Google Scholar]
  45. Segel, I. H. ( 1993; ). Multisite and allosteric enzymes: competitive inhibition. In Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, pp. 450–451. New York: Wiley Interscience.
  46. Srinivasan, R., Viswanathan, T. S. & Fisher, H. F. ( 1988; ). Mechanism of formation of bound alpha-iminoglutarate from alpha-ketoglutarate in the glutamate dehydrogenase reaction. A chemical basis for ammonia recognition. J Biol Chem 263, 2304–2308.
    [Google Scholar]
  47. Stevens, L., Duncan, D. & Robertson, P. ( 1989; ). Purification and characterization of NAD-glutamate dehydrogenase from Aspergillus nidulans. FEMS Microbiol Lett 57, 173–178.[CrossRef]
    [Google Scholar]
  48. Syed, S. E.-H., Engel, P. C. & Parker, D. M. ( 1991; ). Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD+-dependent glutamate dehydrogenase of Clostridium symbiosum. Biochim Biophys Acta 1115, 123–130.[CrossRef]
    [Google Scholar]
  49. ter Schure, E. G., van Riel, N. A. W. & Verrips, C. T. ( 2000; ). The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24, 67–83.[CrossRef]
    [Google Scholar]
  50. Veronese, F. M., Nyc, J. F., Degani, Y., Brown, D. M. & Smith, E. L. ( 1974; ). Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J Biol Chem 249, 7922–7928.
    [Google Scholar]
  51. Watson, D. H., Harvey, M. J. & Dean, P. D. G. ( 1978; ). The selective retardation of NADP+-dependent dehydrogenases by immobilized Procion red HE-3B. Biochem J 173, 591–596.
    [Google Scholar]
  52. Willeke, T. & Vorlop, K. D. ( 2001; ). Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56, 289–295.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27751-0
Loading
/content/journal/micro/10.1099/mic.0.27751-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1409 - 1419

Molecular mass determination of NADP-GDH.

Inhibition of NADP-GDH by three dicarboxylate compounds.

[PDF file of Figs S1 and S2](36 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error