1887

Abstract

NADP-dependent glutamate dehydrogenase (NADP-GDH) mediates fungal ammonium assimilation through reductive synthesis of glutamate from 2-oxoglutarate. By virtue of its position at the interface of carbon and nitrogen metabolism, biosynthetic NADP-GDH is a potential candidate for metabolic control. In order to facilitate characterization, a new and effective dye-affinity method was devised to purify NADP-GDH from two aspergilli, and . The NADP-GDH was characterized at length and its kinetic interaction constants with glutamate ( 34·7 mM) and ammonium ( 1·05 mM; 0·4 mM) were consistent with an anabolic role. Isophthalate, 2-methyleneglutarate and 2,4-pyridinedicarboxylate were significant inhibitors, with respective values of 6·9, 9·2 and 202·0 μM. The enzyme showed allosteric properties and a sigmoid response ( =2·5) towards 2-oxoglutarate saturation. The co-operative behaviour was a feature common to NADP-GDH from , and . NADP-GDH may therefore be a crucial determinant in adjusting 2-oxoglutarate flux between the tricarboxylic acid cycle and glutamate biosynthesis in aspergilli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27751-0
2005-05-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511409.html?itemId=/content/journal/micro/10.1099/mic.0.27751-0&mimeType=html&fmt=ahah

References

  1. Agrawal A. K., Rao V. K. M. 1983; Affinity chromatographic purification of glutamate dehydrogenase of Aspergillus ochraceus. Indian J Exp Biol21:553–556
    [Google Scholar]
  2. Aguirre J., Hansberg W. 1988; A rapid and easy method for the purification of the Neurospora crassa NADP-specific glutamate dehydrogenase. Fungal Genet Newsl35:5–6
    [Google Scholar]
  3. Baars J. J. P., Op den Camp H. J. M., van Hoek A. H. A. M., van der Drift C., Van Griensven L. J. L. D., Visser J., Vogels G. D. 1995; Purification and characterization of NADP-dependent glutamate dehydrogenase from the commercial mushroom Agaricus bisporus. Curr Microbiol30:211–217[CrossRef]
    [Google Scholar]
  4. Baker P. J., Britton K. L., Engel P. C., Farrants G. W., Lilley K. S., Rice D. W., Stillman T. J. 1992; Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins12:75–86[CrossRef]
    [Google Scholar]
  5. Bennett J. W. 1998; Mycotechnology: the role of fungi in biotechnology. J Biotechnol66:101–107[CrossRef]
    [Google Scholar]
  6. Blumenthal K. M., Smith E. L. 1973; Nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase of Neurospora. I. Isolation, subunits, amino acid composition, sulfhydryl groups, and identification of a lysine residue reactive with pyridoxal phosphate and N-ethylmaleimide. J Biol Chem248:6002–6008
    [Google Scholar]
  7. Bogati M. S., Posci I., Maticsek J., Boross P., Tozser J., Szentirmai A. 1996; NADP-specific glutamate dehydrogenase of Penicillium chrysogenum has a homohexamer structure. J Basic Microbiol36:371–375[CrossRef]
    [Google Scholar]
  8. Bohme H.-J., Kopperschlager G., Schulz J., Hofmann E. 1972; Affinity chromatography of phosphofructokinase using Cibacron blue F3G-A. J Chromatogr69:209–214[CrossRef]
    [Google Scholar]
  9. Botton B., Msatef Y. 1983; Purification and properties of NADP-dependent glutamate dehydrogenase from Sphaerostilbe repens. Physiol Plant59:428–444[CrossRef]
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  11. Brunhuber N. M. W., Blanchard J. S. 1994; The biochemistry and enzymology of amino acid dehydrogenases. Crit Rev Biochem Mol Biol29:415–467[CrossRef]
    [Google Scholar]
  12. Cardoza R. E., Moralejo F. J., Gutierrez S., Casqueiro J., Fierro F., Martin J. F. 1998; Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr Genet34:50–59[CrossRef]
    [Google Scholar]
  13. Caughey W. S., Smiley J. D., Hellerman L. 1956; l-Glutamic acid dehydrogenase: structural requirements for substrate competition: effect of thyroxine. J Biol Chem224:591–607
    [Google Scholar]
  14. Cooper T. G. 2004; Integrated regulation of the nitrogen-carbon interface. In Topics in Current Genetics vol 7 pp225–257 Edited by Winderickx J., Taylor P. M.. Berlin & Heidelberg: Springer;
    [Google Scholar]
  15. Cunliffe D., Leason M., Parkin D., Lea P. 1983; The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry22:1357–1360[CrossRef]
    [Google Scholar]
  16. DeLuna A., Avendano A., Riego L., Gonzalez A. 2001; NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem276:43775–43783[CrossRef]
    [Google Scholar]
  17. Denton T. T., Thompson C. M., Cooper J. L. 2001; Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases. Anal Biochem298:265–274[CrossRef]
    [Google Scholar]
  18. Diez B., Mellado E., Rodriguez M., Bernasconi E., Barredo J. L. 1999; The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol52:196–207[CrossRef]
    [Google Scholar]
  19. Ellis K. J., Morrison J. F. 1982; Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol87:405–426
    [Google Scholar]
  20. Fincham J. R. S. 1962; Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa. J Mol Biol4:257–274[CrossRef]
    [Google Scholar]
  21. Fincham J. R. S., Kinsey J. A., Fuentes A. M., Cummings N. J., Connerton I. F. 2000; The Neurospora am gene and NADP-specific glutamate dehydrogenase: mutational sequence changes and functional effects – more mutants and a summary. Genet Res76:1–10[CrossRef]
    [Google Scholar]
  22. Fisher H. F., Maniscalco S. J., Tally J. 2001; Stabilization of noncovalent intermediates in enzymatically catalyzed reactions. Biochem Biophys Res Commun287:343–347[CrossRef]
    [Google Scholar]
  23. Gabriel O., Gersten D. M. 1992; Staining for enzymatic activity after gel electrophoresis, I. Anal Biochem203:1–21[CrossRef]
    [Google Scholar]
  24. Gerhart J. C., Pardee A. B. 1963; The effect of feedback inhibitor, CTP, on subunit interactions in aspartate transcarbamylase. Cold Spring Harbor Symp Quant Biol28:491–496[CrossRef]
    [Google Scholar]
  25. Hawkins A. R., Gurr S. J., Montague P., Kinghorn J. R. 1989; Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Mol Gen Genet218:105–111[CrossRef]
    [Google Scholar]
  26. Holmes A. R., Collings A., Farnden K. J. F., Shepherd M. G. 1989; Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol135:1423–1430
    [Google Scholar]
  27. Hudson R. C., Daniel R. M. 1993; l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol106B:767–792
    [Google Scholar]
  28. Kinghorn J. R., Pateman J. A. 1973; NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J Gen Microbiol78:39–46[CrossRef]
    [Google Scholar]
  29. Kumar S., Punekar N. S., SatyaNarayan V., Venkatesh K. V. 2000; Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng67:575–584[CrossRef]
    [Google Scholar]
  30. Kusnan M. B., Berger M. G., Fock H. P. 1987; The involvement of glutamine synthetase/glutamate synthase in ammonia assimilation by Aspergillus nidulans. J Gen Microbiol133:1235–1242
    [Google Scholar]
  31. Kusnan M. B., Klug K., Fock H. P. 1989; Ammonia assimilation by Aspergillus nidulans: [15N]ammonia study. J Gen Microbiol135:729–738
    [Google Scholar]
  32. MacRae I. J., Segel I. H., Fisher A. J. 2002; Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum. Nat Struct Biol9:945–949[CrossRef]
    [Google Scholar]
  33. Martin F., Msatef Y., Botton B. 1983; Nitrogen assimilation in mycorrhizas. Purification and properties of the nicotinamide dinucleotide phosphate-specific glutamate dehydrogenase of the ectomycorrhizal fungus Cenococcum geophilum Fr. New Phytol93:415–422[CrossRef]
    [Google Scholar]
  34. Martin F., Stewart G. R., Genetet I., Mourot B. 1988; The involvement of glutamate dehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete Cenococcum geophylum. New Phytol110:541–550[CrossRef]
    [Google Scholar]
  35. Marx A., Eikmanns B. J., Sahm H., de Graaf A. A., Eggeling L. 1999; Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng1:35–48[CrossRef]
    [Google Scholar]
  36. Marzluf G. A. 1997; Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev61:17–32
    [Google Scholar]
  37. Meixner-Monori B., Kubicek C. P., Habison A., Kubicek-Pranz E. M, Röhr M. 1985; Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J Bacteriol161:265–271
    [Google Scholar]
  38. Mora J. 1990; Glutamine metabolism and cycling in Neurospora crassa. Microbiol Rev54:293–304
    [Google Scholar]
  39. Nielsen P. A., Jaroszewski J. W., Norrby P.-O., Liljefors T. 2001; An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution. J Am Chem Soc123:2003–2006[CrossRef]
    [Google Scholar]
  40. Nissen T. L., Kielland-Brandt M. C., Nielsen J., Villadsen J. 2000; Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonia assimilation. Metab Eng2:69–77[CrossRef]
    [Google Scholar]
  41. Pedersen H., Carlsen M., Nielsen J. 1999; Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl Environ Microbiol65:11–19
    [Google Scholar]
  42. Perysinakis A., Kinghorn J. R., Drainas C. 1994; Biochemical and genetical studies of NADP-specific glutamate dehydrogenase in the fission yeast Schizosaccharomyces pombe. Curr Genet26:315–320[CrossRef]
    [Google Scholar]
  43. Ruijter G. J. G., Kubicek C. P., Visser J. 2002; Production of organic acids by fungi. In The Mycota. X. Industrial Applications pp213–230 Edited by Osiewacz H. D.. Berlin & Heidelberg: Springer;
    [Google Scholar]
  44. Schwartz T., Kusnan M. B., Fock H. P. 1991; The involvement of glutamate dehydrogenase and glutamine synthetase/glutamate synthase in ammonia assimilation by the basidiomycete fungus Strophia semiglobata. J Gen Microbiol137:2253–2258[CrossRef]
    [Google Scholar]
  45. Segel I. H. 1993; Multisite and allosteric enzymes: competitive inhibition. In Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems pp450–451 New York: Wiley Interscience;
    [Google Scholar]
  46. Srinivasan R., Viswanathan T. S., Fisher H. F. 1988; Mechanism of formation of bound alpha-iminoglutarate from alpha-ketoglutarate in the glutamate dehydrogenase reaction. A chemical basis for ammonia recognition. J Biol Chem263:2304–2308
    [Google Scholar]
  47. Stevens L., Duncan D., Robertson P. 1989; Purification and characterization of NAD-glutamate dehydrogenase from Aspergillus nidulans. FEMS Microbiol Lett57:173–178[CrossRef]
    [Google Scholar]
  48. Syed S. E.-H., Engel P. C., Parker D. M. 1991; Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD+-dependent glutamate dehydrogenase ofClostridium symbiosum. Biochim Biophys Acta 1115;123–130[CrossRef]
    [Google Scholar]
  49. ter Schure E. G., van Riel N. A. W., Verrips C. T. 2000; The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev24:67–83[CrossRef]
    [Google Scholar]
  50. Veronese F. M., Nyc J. F., Degani Y., Brown D. M., Smith E. L. 1974; Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J Biol Chem249:7922–7928
    [Google Scholar]
  51. Watson D. H., Harvey M. J., Dean P. D. G. 1978; The selective retardation of NADP+-dependent dehydrogenases by immobilized Procion red HE-3B. Biochem J173:591–596
    [Google Scholar]
  52. Willeke T., Vorlop K. D. 2001; Biotechnological production of itaconic acid. Appl Microbiol Biotechnol56:289–295[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27751-0
Loading
/content/journal/micro/10.1099/mic.0.27751-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error