1887

Abstract

Generation of biofilms by the pathogenic yeast is correlated closely with disease. The phenomenon of phenotype switching in 20 isolates of was examined and the relationship with biofilm development was investigated. Four stable and heritable phenotypes were identified – crepe, concentric, smooth and crater. Cells from crepe and concentric phenotypes are almost entirely pseudohyphal, whilst cells from smooth and crater phenotypes are mostly yeast-like. The pseudohyphae from concentric phenotypes are approximately 45 % wider than those from crepe cells. The cell size of the smooth phenotype is smaller than those of the other three phenotypes. On polystyrene surfaces, the concentric phenotype generates up to twofold more biofilm than the crepe and crater phenotypes. Smooth phenotypes generate the least biofilm. Concentric phenotypes also invade agar surfaces more than the crepe and crater phenotypes, whilst smooth phenotypes do not invade at all. The smooth phenotype, however, grows significantly faster than the others. The quorum-sensing molecule farnesol inhibits formation of biofilms by the crepe, concentric and crater phenotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27739-0
2005-04-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511073.html?itemId=/content/journal/micro/10.1099/mic.0.27739-0&mimeType=html&fmt=ahah

References

  1. Anderson J. M., Soll D. R. 1987; Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol169:5579–5588
    [Google Scholar]
  2. Baillie G. S., Douglas L. J. 1999; Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol48:671–679[CrossRef]
    [Google Scholar]
  3. Branchini M. L., Pfaller M. A., Rhine-Chalberg J., Frempong T., Isenberg H. D. 1994; Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis. J Clin Microbiol32:452–456
    [Google Scholar]
  4. Brockert P. J., Lachke S. A., Srikantha T., Pujol C., Galask R., Soll D. R. 2003; Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect Immun71:7109–7118[CrossRef]
    [Google Scholar]
  5. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol183:5385–5394[CrossRef]
    [Google Scholar]
  6. Déziel E., Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol183:1195–1204[CrossRef]
    [Google Scholar]
  7. Dieterich C., Schandar M., Noll M., Johannes F.-J., Brunner H., Graeve T., Rupp S. 2002; In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology148:497–506
    [Google Scholar]
  8. Djordjevic D., Wiedmann M., McLandsborough L. A. 2002; Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol68:2950–2958[CrossRef]
    [Google Scholar]
  9. Drenkard E., Ausubel F. M. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature416:740–743[CrossRef]
    [Google Scholar]
  10. Enger L., Joly S., Pujol C., Simonson P., Pfaller M., Soll D. R. 2001; Cloning and characterization of a complex DNA fingerprinting probe for Candida parapsilosis. J Clin Microbiol39:658–669[CrossRef]
    [Google Scholar]
  11. Fu Y., Rieg G., Fonzi W. A., Belanger P. H., Filler S. G, Edwards J. E. Jr. 1998; Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun66:1783–1786
    [Google Scholar]
  12. Fu Y., Ibrahim A. S., Sheppard D. C., Chen Y.-C., French S. W., Cutler J. E., Filler S. G., Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72[CrossRef]
    [Google Scholar]
  13. García-Sánchez S., Aubert S., Iraqui I., Janbon G., Ghigo J.-M., d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell3:536–545[CrossRef]
    [Google Scholar]
  14. Hajjeh R. A., Sofair A. N., Harrison L. H.. 13 other authors 2004; Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol42:1519–1527[CrossRef]
    [Google Scholar]
  15. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol2:95–108[CrossRef]
    [Google Scholar]
  16. Häußler S. 2004; Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol6:546–551[CrossRef]
    [Google Scholar]
  17. Hawser S. P., Douglas L. J. 1994; Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun62:915–921
    [Google Scholar]
  18. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W. 2001; Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol67:2982–2992[CrossRef]
    [Google Scholar]
  19. Jabra-Rizk M. A., Falkler W. A., Meiller T. F. 2004; Fungal biofilms and drug resistance. Emerg Infect Dis10:14–19[CrossRef]
    [Google Scholar]
  20. Kennedy M. J., Rogers A. L., Hanselmen L. R., Soll D. R., Yancey R. J., Jr. 1988; Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia102:149–156[CrossRef]
    [Google Scholar]
  21. Kruppa M., Krom B. P., Chauhan N., Bambach A. V., Cihlar R. L., Calderone R. A. 2004; The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell3:1062–1065[CrossRef]
    [Google Scholar]
  22. Kuchma S. L., O'Toole G. A. 2000; Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol11:429–433[CrossRef]
    [Google Scholar]
  23. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun70:878–888[CrossRef]
    [Google Scholar]
  24. Kumamoto C. A. 2002; Candida biofilms. Curr Opin Microbiol5:608–611[CrossRef]
    [Google Scholar]
  25. Lewis R. E., Lo H.-J., Raad I. I., Kontoyiannis D. P. 2002; Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother46:1153–1155[CrossRef]
    [Google Scholar]
  26. Lott T. J., Kuykendall R. J., Welbel S. F., Pramanik A., Lasker B. A. 1993; Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet23:463–467[CrossRef]
    [Google Scholar]
  27. Odds F. C. 1988; Candida and Candidosis, 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  28. Pfaller M. A., Diekema D. J. 2004; Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect10 (Suppl. 1:11–23[CrossRef]
    [Google Scholar]
  29. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother45:2475–2479[CrossRef]
    [Google Scholar]
  30. Ramage G., Saville S. P., Wickes B. L., López-Ribot J. L. 2002a; Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol68:5459–5463[CrossRef]
    [Google Scholar]
  31. Ramage G., VandeWalle K., Wickes B. L, López-Ribot J. 2002b; The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett214:95–100[CrossRef]
    [Google Scholar]
  32. Rashid M. H., Rajanna C., Ali A., Karaolis D. K. R. 2003; Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett227:113–119[CrossRef]
    [Google Scholar]
  33. Rashid M. H., Rajanna C., Zhang D., Pasquale V., Magder L. S., Ali A., Dumontet S., Karaolis D. K. R. 2004; Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol Lett230:105–113[CrossRef]
    [Google Scholar]
  34. Ren D., Bedzyk L. A., Setlow P., Thomas S. M., Ye R. W., Wood T. K. 2004a; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng86:344–364[CrossRef]
    [Google Scholar]
  35. Ren D., Bedzyk L. A., Thomas S. M., Ye R. W., Wood T. K. 2004b; Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol64:515–524[CrossRef]
    [Google Scholar]
  36. Roilides E., Farmaki E., Evdoridou J.. 9 other authors 2004; Neonatal candidiasis: analysis of epidemiology, drug susceptibility, and molecular typing of causative isolates. Eur J Clin Microbiol Infect Dis23:745–750[CrossRef]
    [Google Scholar]
  37. Sato T., Watanabe T., Mikami T., Matsumoto T. 2004; Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull27:751–752[CrossRef]
    [Google Scholar]
  38. Schembri M. A., Kjærgaard K., Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol48:253–267[CrossRef]
    [Google Scholar]
  39. Schoolnik G. K., Voskuil M. I., Schnappinger D., Yildiz F. H., Meibom K., Dolganov N. A., Wilson M. A., Chong K. H. 2001; Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1 E1 Tor. Methods Enzymol336:3–18
    [Google Scholar]
  40. Shchepin R., Hornby J. M., Burger E., Niessen T., Dussault P., Nickerson K. W. 2003; Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem Biol10:743–750[CrossRef]
    [Google Scholar]
  41. Shin J. H., Kee S. J., Shin M. G., Kim S. H., Shin D. H., Lee S. K., Suh S. P., Ryang D. W. 2002; Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol40:1244–1248[CrossRef]
    [Google Scholar]
  42. Slutsky B., Buffo J., Soll D. R. 1985; High-frequency switching of colony morphology in Candida albicans. Science230:666–669[CrossRef]
    [Google Scholar]
  43. Soll D. R., Morrow B., Srikantha T. 1993; High-frequency phenotypic switching in Candida albicans. Trends Genet9:61–65[CrossRef]
    [Google Scholar]
  44. Stepanovic S., Vukovic D., Jesic M., Ranin L. 2004; Influence of acetylsalicylic acid (aspirin) on biofilm production by Candida species. J Chemother16:134–138[CrossRef]
    [Google Scholar]
  45. Tavanti A., Davidson A. D., Gow N. A. R., Maiden M. C. J., Odds F. C. 2005; Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol43:284–292[CrossRef]
    [Google Scholar]
  46. Vargas K., Wertz P. W., Drake D., Morrow B., Soll D. R. 1994; Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect Immun62:1328–1335
    [Google Scholar]
  47. Weems J. J. Jr. 1992; Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis14:756–766[CrossRef]
    [Google Scholar]
  48. Yildiz F. H., Dolganov N. A., Schoolnik G. K. 2001; VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPSETr-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol183:1716–1726[CrossRef]
    [Google Scholar]
  49. Zhao X., Oh S.-H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J. P., Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology150:2415–2428[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27739-0
Loading
/content/journal/micro/10.1099/mic.0.27739-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error