1887

Abstract

GB17 requires thiosulfate for induction of the sulfur-oxidizing (Sox) enzyme system. The genes are divergently oriented to the genes. predicts a transcriptional regulator of the ArsR family and a periplasmic thioredoxin. The homogenote mutant GBΩS carrying a disruption of by the Ω-kanamycin-resistance-encoding interposon expressed a low thiosulfate-oxidizing activity under heterotrophic and mixotrophic growth conditions. This activity was repressed by complementation with , suggesting that SoxR acts as a repressor and SoxS is essential for full expression. Sequence analysis uncovered operator characteristics in the intergenic regions and . In each region a transcription start site was identified by primer extension analysis. Both regions were cloned into the vector pRI1 and transferred to . Strains harbouring pRI1 with or expressed the genes under heterotrophic conditions at a low rate, indicating repressor titration. Sequence analysis of SoxR suggested a helix–turn–helix (HTH) motif at position 87–108 and uncovered an invariant Cys-80 and a cysteine residue at the C-terminus. SoxR was overproduced in with an N-terminal His-tag and purified to near homogeneity. Electrophoretic gel mobility shift assays with SoxR retarded the region as a single band while the region revealed at least two protein–DNA complexes. These data demonstrated binding of SoxR to the relevant DNA. This is believed to be the first report of regulation of chemotrophic sulfur oxidation at the molecular level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27724-0
2005-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511707.html?itemId=/content/journal/micro/10.1099/mic.0.27724-0&mimeType=html&fmt=ahah

References

  1. Altenbuchner, J., Viell, P. & Pelletier, I. ( 1992; ). Positive selection vector based on palindromic sequences. Methods Enzymol 216, 457–566.
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Appia-Ayme, C., Little, P. J., Matsumoto, Y., Leech, A. P. & Berks, B. C. ( 2001; ). Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183, 6107–6118.[CrossRef]
    [Google Scholar]
  4. Baker, S. C., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O.-M. H. & van Spanning, R. J. M. ( 1998; ). Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62, 1046–1078.
    [Google Scholar]
  5. Bardischewsky, F. & Friedrich, C. G. ( 2001; ). The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function in lithotrophy. FEMS Microbiol Lett 202, 215–220.[CrossRef]
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Chandra, T. S. & Friedrich, C. G. ( 1986; ). Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol 166, 446–452.
    [Google Scholar]
  8. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  9. Degryse, E. ( 1990; ). Influence of the second and third codon of the expression of recombinant hirudin in E. coli. FEBS Lett 269, 244–246.[CrossRef]
    [Google Scholar]
  10. Dodd, I. B. & Egan, J. B. ( 1990; ). Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18, 5019–5026.[CrossRef]
    [Google Scholar]
  11. Friedrich, C. G. ( 1998; ). Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39, 235–289.
    [Google Scholar]
  12. Friedrich, C. G. & Mitrenga, G. ( 1981; ). Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10, 209–212.[CrossRef]
    [Google Scholar]
  13. Friedrich, C. G., Quentmeier, A., Bardischewsky, F., Rother, D., Kraft, R., Kostka, S. & Prinz, H. ( 2000; ). Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182, 4677–4687.[CrossRef]
    [Google Scholar]
  14. Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. ( 2001; ). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67, 2873–2882.[CrossRef]
    [Google Scholar]
  15. Huang, X. & Miller, W. ( 1991; ). A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12, 337–357.[CrossRef]
    [Google Scholar]
  16. Kaneko, T., Nakamura, Y., Sato, S. & 14 other authors ( 2002; ). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9, 189–197.[CrossRef]
    [Google Scholar]
  17. Kelly, D. P., Shergill, J. K., Lu, W.-P. & Wood, A. P. ( 1997; ). Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71, 95–107.[CrossRef]
    [Google Scholar]
  18. Kieser, T. ( 1984; ). Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 12, 19–36.[CrossRef]
    [Google Scholar]
  19. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  20. Larimer, F. W., Chain, P., Hauser, L. & 16 other authors ( 2004; ). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22, 55–61.[CrossRef]
    [Google Scholar]
  21. Ludwig, W., Mittenhuber, G. & Friedrich, C. G. ( 1993; ). Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 43, 363–367.[CrossRef]
    [Google Scholar]
  22. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C. & 24 other authors ( 2003; ). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  23. Matsuzaki, M., Abe, M., Hara, S., Iwasaki, Y., Yamamoto, I. & Satoh, T. ( 2003; ). An abundant periplasmic protein of the denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans is PstS, a component of an ABC phosphate transport system. Plant Cell Physiol 44, 212–216.[CrossRef]
    [Google Scholar]
  24. McPherson, M. J., Quirke, P. & Taylor, G. R. ( 1992; ). PCR – a Practical Approach. New York: Oxford University Press.
  25. Mittenhuber, G., Sonomoto, K., Egert, M. & Friedrich, C. G. ( 1991; ). Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha. J Bacteriol 173, 7340–7344.
    [Google Scholar]
  26. Moran, M. A., Buchan, A., Gonzalez, J. M. & 32 other authors ( 2004; ). Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913.[CrossRef]
    [Google Scholar]
  27. Pfitzner, U., Odenwald, A., Ostermann, T., Weingard, L., Ludwig, B. & Richter, O. M. ( 1998; ). Cytochrome c oxidase (heme aa 3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I. Bioenerg Biomembr 30, 89–97.[CrossRef]
    [Google Scholar]
  28. Rainey, F. A., Kelly, D. P., Stackebrandt, E., Burghardt, J., Hiraishi, A., Katayama, Y. & Wood, A. P. ( 1999; ). A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49, 645–651.[CrossRef]
    [Google Scholar]
  29. Rémy, F., Frey, J. & Krisch, H. ( 1987; ). Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52, 147–154.[CrossRef]
    [Google Scholar]
  30. Robertson, L. A. & Kuenen, J. G. ( 1983; ). Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultative autotrophic sulphur bacterium. J Gen Microbiol 129, 2847–2855.
    [Google Scholar]
  31. Rother, D. ( 1998; ). MerR der Regulator der Quecksilberresistenz-Gene aus Streptomyces lividans 1326 – Expression, Reinigung und Charakterisierung. PhD thesis, Universität Stuttgart: Stuttgart: Verlag Ulrich E. Grauer.
  32. Rother, D., Henrich, H.-J., Quentmeier, A., Bardischewsky, F. & Friedrich, C. G. ( 2001; ). Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183, 4499–4508.[CrossRef]
    [Google Scholar]
  33. Roychoudhury, R. & Wu, R. ( 1980; ). Terminal transferase-catalyzed addition of nucleotides to the 3′ termini of DNA. Methods Enzymol 65, 43–62.
    [Google Scholar]
  34. Roychoudhury, R., Jay, E. & Wu, R. ( 1976; ). Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acids Res 3, 863–877.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Maniatis, T. & Fritsch, E. F. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1, 784–790.[CrossRef]
    [Google Scholar]
  37. Steinrücke, P. & Ludwig, B. ( 1993; ). Genetics of Paracoccus denitrificans. FEMS Microbiol Rev 104, 83–118.[CrossRef]
    [Google Scholar]
  38. Tatusova, T. A. & Madden, T. L. ( 1999; ). BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  40. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 6762–6766.
    [Google Scholar]
  41. Weber, K., Pringle, J. R. & Osborn, M. ( 1972; ). Measurement of molecular weights by electrophoresis on SDS polyacrylamide gel. Methods Enzymol 26, 3–27.
    [Google Scholar]
  42. Wodara, C., Kostka, S., Egert, M., Kelly, D. P. & Friedrich, C. G. ( 1994; ). Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J Bacteriol 176, 6188–6191.
    [Google Scholar]
  43. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27724-0
Loading
/content/journal/micro/10.1099/mic.0.27724-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error