: an essential gene involved in cell division, cell growth and chromosome segregation Free

Abstract

( ) is an essential gene implicated in cell division and chromosome segregation. This gene was disrupted by insertional inactivation creating JHSR1, which was viable only when a wild-type copy of was expressed , confirming the essentiality of the gene. The absence of DivIVA in JHSR1 inhibited proper cell division, which resulted in abnormal cell clusters possessing enlarged cells of altered shape instead of the characteristic diplococcal morphology of enterococci. The lower viability of the mutant is caused by improper nucleoid segregation and impaired septation within the numerous cells generated in each cluster. Overexpression of DivIVA in KJB24 resulted in enlarged cells with disrupted cell division, suggesting that this round mutant strain could be used as an indicator for functionality of DivIVA. A mutant was not complemented by DivIVA, indicating that this protein does not recognize DivIVA-specific target sites in , or that it does not interact with other proteins of the cell division machinery of this micro-organism. DivIVA also failed to complement a mutant, supporting the phylogenetic distance between and . Our results indicate that DivIVA is a species-specific multifunctional protein implicated in cell division and chromosome segregation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27718-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511381.html?itemId=/content/journal/micro/10.1099/mic.0.27718-0&mimeType=html&fmt=ahah

References

  1. Akiyama T., Inouye S., Komano T. 2003; Novel developmental genes, fruCD, of Myxococcus xanthus: involvement of a cell division protein in multicellular development. J Bacteriol 185:3317–3324 [CrossRef]
    [Google Scholar]
  2. Bae T., Clerc-Bardin S., Dunny G. M. 2000; Analysis of expression of prgX, a key negative regulator of the transfer of the Enterococcus faecalis pheromone-inducible plasmid pCF10. J Mol Biol 297:861–875 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. 2000; Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190 [CrossRef]
    [Google Scholar]
  5. Callegan M. C., Jett B. D., Hancock L. E., Gilmore M. S. 1999; Role of hemolysin BL in the pathogenesis of extraintestinal Bacillus cereus infection assessed in an endophthalmitis model. Infect Immun 67:3357–3366
    [Google Scholar]
  6. Cha J. H., Stewart G. C. 1997; The divIVA minicell locus of Bacillus subtilis. J Bacteriol 179:1671–1683
    [Google Scholar]
  7. Christie P. J., Dunny G. M. 1986; Identification of regions of the Streptococcus faecalis plasmid pCF-10 that encode antibiotic resistance and pheromone response functions. Plasmid 15:230–241 [CrossRef]
    [Google Scholar]
  8. Corbin B. D., Yu X. C., Margolin W. 2002; Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 21:1998–2008 [CrossRef]
    [Google Scholar]
  9. de Boer P. A., Crossley R. E., Rothfield L. I. 1989; A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli . Cell 56:641–649 [CrossRef]
    [Google Scholar]
  10. de la Fuente A., Palacios P., Vicente M. 2001; Transcription of the Escherichia coli dcw cluster: evidence for distal upstream transcripts being involved in the expression of the downstream ftsZ gene. Biochimie 83:109–115 [CrossRef]
    [Google Scholar]
  11. Duez C., Thamm I., Sapunaric F., Coyetter J., Ghuysen J. M. 1998; The division and cell wall gene cluster of Enterococcus hirae S185. DNA Seq 9:149–161
    [Google Scholar]
  12. Edelstein E. M., Rosenzweig M. S., Daneo-Moore L., Higgins M. L. 1980; Unit cell hypothesis for Streptococcus faecalis. J Bacteriol 143:499–505
    [Google Scholar]
  13. Edwards D. H., Errington J. 1997; The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915 [CrossRef]
    [Google Scholar]
  14. Facklam R. R., Carvalho M. G. S., Teixeira L. M. 2002; History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. In The Enterococci, Pathogenesis, Molecular Biology, and Antibiotic Resistance pp 1–54 Edited by Gilmore M. S., Clewell D. B., Courvalin P., Dunny G. M., Murray B. E., Rice L. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Fadda D., Pischedda C., Caldara F., Whalen M. B., Anderluzzi D., Domenici E., Massidda O. 2003; Characterization of divIVA and other genes located in the chromosomal region downstream of thedcw cluster in Streptococcus pneumoniae . J Bacteriol 185:6209–6214 [CrossRef]
    [Google Scholar]
  16. Flardh K. 2003; Growth polarity and cell division in Streptomyces. Curr Opin Microbiol 6:564–571 [CrossRef]
    [Google Scholar]
  17. Flardh K., Palacios P., Vicente M. 1998; Cell division genes ftsQAZ in Escherichia coli require distant cis-acting signals upstream of ddlB for full expression. Mol Microbiol 30:305–315 [CrossRef]
    [Google Scholar]
  18. Higgins M. L., Daneo-Moore L., Boothby D., Shockman G. D. 1974; Effect of inhibition of deoxyribonucleic acid and protein synthesis on the direction of cell wall growth in Streptococcus faecalis . J Bacteriol 118:681–692
    [Google Scholar]
  19. Higgins M. L., Carson D. D., Daneo-Moore L. 1980; Morphological effect of cerulenin treatment on Streptococcus faecalis as studied by ultrastructure reconstruction. J Bacteriol 143:989–994
    [Google Scholar]
  20. Hoffman G. A., Garrison T. R., Dohlman H. G. 2002; Analysis of RGS proteins in Saccharomyces cerevisiae. Methods Enzymol 344:617–631
    [Google Scholar]
  21. Jacob A. E., Hobbs S. J. 1974; Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var.zymogenes . J Bacteriol 117:360–372
    [Google Scholar]
  22. Jones L. J., Carballido-Lopez R., Errington J. 2001; Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922 [CrossRef]
    [Google Scholar]
  23. Marston A. L., Errington J. 1999; Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33:84–96 [CrossRef]
    [Google Scholar]
  24. Massidda O., Anderluzzi D., Friedli L., Feger G. 1998; Unconventional organization of the division and cell wall cluster of Streptococcus pneumoniae. Microbiology 144:3069–3078 [CrossRef]
    [Google Scholar]
  25. Pinho M. G., Errington J. 2004; A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. FEMS Microbiol Lett 240:145–149 [CrossRef]
    [Google Scholar]
  26. Poyart C., Trieu-Cuot P. 1997; A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in gram-positive bacteria. FEMS Microbiol Lett 156:193–198 [CrossRef]
    [Google Scholar]
  27. Pucci M. J., Thanassi J. A., Discotto L. F., Kessler R. E., Dougherty T. J. 1997; Identification and characterization of cell-wall division gene clusters in pathogenic Gram positive cocci. J Bacteriol 179:5632–5635
    [Google Scholar]
  28. Ramirez-Arcos S., Szeto J., Beveridge T., Victor C., Francis F., Dillon J. 2001; Deletion of the cell-division inhibitor MinC results in lysis of Neisseria gonorrhoeae. Microbiology 147:225–237
    [Google Scholar]
  29. Ramirez-Arcos S., Szeto J., Dillon J. A., Margolin W. 2002; Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli . Mol Microbiol 46:493–504 [CrossRef]
    [Google Scholar]
  30. Ramirez-Arcos S., Greco V., Douglas H., Tessier D., Fan D., Szeto J., Wang J., Dillon J. R. 2004; Conserved glycines in the C-terminus of MinC proteins are implicated in their functionality as a cell division inhibitor. J Bacteriol 186:2841–2855 [CrossRef]
    [Google Scholar]
  31. Ramos A., Honrubia M. P., Valbuena N., Vaquera J., Mateos L. M., Gil J. A. 2003; Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149:3531–3542 [CrossRef]
    [Google Scholar]
  32. Szeto J., Ramirez-Arcos S., Raymond C., Hicks L. D., Kay C. M., Dillon J. A. 2001; Gonococcal MinD affects cell division in Neisseria gonorrhoeae and Escherichia coli and exhibits a novel self-interaction. J Bacteriol 183:6253–6264 [CrossRef]
    [Google Scholar]
  33. The National Committee for Clinical Laboratory Standards (NCCLS) 2002 Performance Standards for Antimicrobial Susceptibility Testing; Twelfth Informational Supplement NCCLS document M100_MS12
    [Google Scholar]
  34. Thomaides H. B., Freeman M., El Karoui M., Errington J. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673 [CrossRef]
    [Google Scholar]
  35. Wu L. J., Errington J. 2003; RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49:1463–1475 [CrossRef]
    [Google Scholar]
  36. Wu L. J., Errington J. 2004; Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27718-0
Loading
/content/journal/micro/10.1099/mic.0.27718-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed