1887

Abstract

Gram-negative bacteria use a wide variety of complex mechanisms to secrete proteins across their membranes or to assemble secreted proteins into surface structures. As most archaea only possess a cytoplasmic membrane surrounded by a membrane-anchored S-layer, the organization of such complexes might be significantly different from that in Gram-negative bacteria. Five proteins of , SSO0120, SSO0572, SSO2316, SSO2387 and SSO2680, which are homologous to secretion ATPases of bacterial type II, type IV secretion systems and the type IV pili assembly machinery, were identified. The operon structures of these putative secretion systems encoding gene clusters and the expression patterns of the ATPases under different growth conditions were determined, and it was established that all five putative ATPases do show a divalent cation-dependent ATPase activity at high temperature. These results show that the archaeal secretion systems are related to the bacterial secretion systems and might be powered in a similar way.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27699-0
2005-03-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510763.html?itemId=/content/journal/micro/10.1099/mic.0.27699-0&mimeType=html&fmt=ahah

References

  1. Albers S. V., Driessen A. M. 2002; Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch Microbiol177:209–216[CrossRef]
    [Google Scholar]
  2. Albers S. V., Elferink M. G., Charlebois R. L., Sensen C. W., Driessen A. J., Konings W. N. 1999; Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J Bacteriol181:4285–4291
    [Google Scholar]
  3. Albers S. V., Driessen A. J, Szabó Z.. 2003; Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol185:3918–3925[CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  5. Bally M., Filloux A., Akrim M., Ball G., Lazdunski A., Tommassen J. 1992; Protein secretion in Pseudomonas aeruginosa – characterization of 7 Xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol6:1121–1131[CrossRef]
    [Google Scholar]
  6. Bardy S. L., Jarrell K. F. 2002; FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett208:53–59[CrossRef]
    [Google Scholar]
  7. Bardy S. L., Jarrell K. F. 2003; Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol50:1339–1347[CrossRef]
    [Google Scholar]
  8. Bardy S. L., Ng S. Y., Jarrell K. F. 2003; Prokaryotic motility structures. Microbiology149:295–304[CrossRef]
    [Google Scholar]
  9. Bhattacharjee M. K., Kachlany S. C., Fine D. H., Figurski D. H. 2001; Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J Bacteriol183:5927–5936[CrossRef]
    [Google Scholar]
  10. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol84:54–68
    [Google Scholar]
  11. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol1:137–149[CrossRef]
    [Google Scholar]
  12. Christie P. J. 2001; Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol40:294–305[CrossRef]
    [Google Scholar]
  13. Christie P. J., Ward J. E. Jr, Gordon M. P., Nester E. W. 1989; A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A86:9677–9681[CrossRef]
    [Google Scholar]
  14. Cohen-Krausz S., Trachtenberg S. 2002; The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J Mol Biol321:383–395[CrossRef]
    [Google Scholar]
  15. Craig L., Taylor R. K., Pique M. E.. 9 other authors 2003; Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell11:1139–1150[CrossRef]
    [Google Scholar]
  16. Elferink M. G. L., Albers S.-V., Konings W. N., Driessen A. J. M. 2001; Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol39:1494–1503[CrossRef]
    [Google Scholar]
  17. Faguy D. M., Jarrell K. F., Kuzio J., Kalmokoff M. L. 1994; Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can J Microbiol40:67–71[CrossRef]
    [Google Scholar]
  18. Herdendorf T. J., McCaslin D. R., Forest K. T. 2002; Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol184:6465–6471[CrossRef]
    [Google Scholar]
  19. Hobbs M., Mattick J. S. 1993; Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol10:233–243[CrossRef]
    [Google Scholar]
  20. Kachlany S. C., Planet P. J., Bhattacharjee M. K., Kollia E., Desalle R., Fine D. H., Figurski D. H. 2000; Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol182:6169–6176[CrossRef]
    [Google Scholar]
  21. Koenig H. 1988; Archaeobacterial cell envelopes. Can J Microbiol34:395–406[CrossRef]
    [Google Scholar]
  22. Krause S., Barcena M., Pansegrau W., Lurz R., Carazo J. M., Lanka E. 2000; Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci U S A97:3067–3072[CrossRef]
    [Google Scholar]
  23. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. 1979; An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem100:95–97[CrossRef]
    [Google Scholar]
  24. Lower B. H., Kennelly P. J. 2003; Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol185:3436–3445[CrossRef]
    [Google Scholar]
  25. Mattick J. S. 2002; Type IV pili and twitching motility. Annu Rev Microbiol56:289–314[CrossRef]
    [Google Scholar]
  26. Mattick J. S., Whitchurch C. B., Alm R. A. 1996; The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa – a review. Gene179:147–155[CrossRef]
    [Google Scholar]
  27. Merz A. J., So M., Sheetz M. P. 2000; Pilus retraction powers bacterial twitching motility. Nature407:98–102[CrossRef]
    [Google Scholar]
  28. Miroux B., Walker J. E. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol260:289–298[CrossRef]
    [Google Scholar]
  29. Nunn D. N., Lory S. 1992; Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci U S A89:47–51[CrossRef]
    [Google Scholar]
  30. Patenge N., Berendes A., Engelhardt H., Schuster S. C., Oesterhelt D. 2001; The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol Microbiol41:653–663[CrossRef]
    [Google Scholar]
  31. Peabody C. R., Chung Y. J., Yen M. R., Vidal-Ingigliardi D., Pugsley A. P., Saier M. H. Jr. 2003; Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology149:3051–3072[CrossRef]
    [Google Scholar]
  32. Planet P. J., Kachlany S. C., Desalle R., Figurski D. H. 2001; Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A98:2503–2508[CrossRef]
    [Google Scholar]
  33. Possot O. M., Pugsley A. P. 1994; Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol12:287–299[CrossRef]
    [Google Scholar]
  34. Possot O. M., Pugsley A. P. 1997; The conserved tetracysteine motif in the general secretory pathway component PulE is required for efficient pullulanase secretion. Gene192:45–50[CrossRef]
    [Google Scholar]
  35. Prüschenk R., Baumeister W., Zillig W. 1987; Surface structure variants in different species of Sulfolobus. FEMS Microbiol Lett43:327–330[CrossRef]
    [Google Scholar]
  36. Pugsley A. P. 1993a; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  37. Pugsley A. P. 1993b; Processing and methylation of PuIG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca. Mol Microbiol9:295–308[CrossRef]
    [Google Scholar]
  38. Rivas S., Bolland S., Cabezon E., Goni F. M., de la Cruz C. F. 1997; TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem272:25583–25590[CrossRef]
    [Google Scholar]
  39. Robien M. A., Krumm B. E., Sandkvst M., Hol W. G. J. 2003; Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol333:657–674[CrossRef]
    [Google Scholar]
  40. Sagulenko E., Sagulenko V., Chen J., Christie P. J. 2001; Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol183:5813–5825[CrossRef]
    [Google Scholar]
  41. Samatey F. A., Imada K., Nagashima S., Vonderviszt F., Kumasaka T., Yamamoto M., Namba K. 2001; Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature410:331–337[CrossRef]
    [Google Scholar]
  42. Sandkvist M. 2001; Biology of type II secretion. Mol Microbiol40:271–283[CrossRef]
    [Google Scholar]
  43. Sandkvist M., Bagdasarian M., Howard S. P., DiRita V. J. 1995; Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J14:1664–1673
    [Google Scholar]
  44. Savvides S. N., Yeo H. J., Beck M. R. & 7 other authors. 2003; VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J22:1969–1980[CrossRef]
    [Google Scholar]
  45. Sexton J. A., Pinkner J. S., Roth R., Heuser J. E., Hultgren S. J., Vogel J. P. 2004; The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol186:1658–1666[CrossRef]
    [Google Scholar]
  46. Shevchik V. E., Robert-Baudouy J., Condemine G. 1997; Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J16:3007–3016[CrossRef]
    [Google Scholar]
  47. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. 2000; The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res28:33–36[CrossRef]
    [Google Scholar]
  48. Thanassi D. G. 2002; Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol4:11–20
    [Google Scholar]
  49. Thomas N. A., Mueller S., Klein A., Jarrell K. F. 2002; Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol Microbiol46:879–887[CrossRef]
    [Google Scholar]
  50. Worthington P., Hoang V., Perez-Pomares F., Blum P. 2003; Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol185:482–488[CrossRef]
    [Google Scholar]
  51. Yeo H., Savvides S. N., Herr A. B., Lanka E., Waksman G. 2000; Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion. Syst Mol Cell6:1461–1472[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27699-0
Loading
/content/journal/micro/10.1099/mic.0.27699-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error