1887

Abstract

The gene encoding yeast-enhanced green fluorescent protein (GFP) was placed under control of ALS gene promoters in . The P-GFP reporter strains were validated using various techniques including a new real-time RT-PCR assay to quantify ALS gene expression. The P-GFP reporter strains were grown in media that promoted yeast or germ tube forms, and the resulting fluorescence was measured by flow cytometry. In addition to results that indicate differences in ALS gene expression due to growth medium, growth stage and developmental programme, new data show large differences in transcriptional level among the ALS genes. Expression of was associated with transfer of the P-GFP strain to fresh growth medium. expression increased markedly when germ tubes were visible microscopically and expression exhibited a transient peak between 2 and 3 h following inoculation into fresh YPD medium. Transcription from the and promoters was strongest among those tested and contrasted markedly with the weaker promoter strength at the , , and loci. These weaker transcriptional responses were also observed using real-time RT-PCR measurements on wild-type cells. Assuming a positive correlation between transcriptional level and protein production, these results suggest that some Als proteins are abundant on the cell surface while others are produced at a much lower level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27696-0
2005-04-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511051.html?itemId=/content/journal/micro/10.1099/mic.0.27696-0&mimeType=html&fmt=ahah

References

  1. Barelle C. J., Manson C. L., MacCallum D. M., Odds F. C., Gow N. A. R., Brown A. J. P. 2004; GFP as a quantitative reporter of gene regulation in Candida albicans. Yeast21:333–340[CrossRef]
    [Google Scholar]
  2. Calderone R. A., Braun P. C. 1991; Adherence and receptor relationships of Candida albicans. Microbiol Rev55:1–20
    [Google Scholar]
  3. Chandra J., Kuhn D. M. Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol183:5385–5394[CrossRef]
    [Google Scholar]
  4. Collart M. A., Oliviero S. 1993; Preparation of yeast RNA. In Current Protocols in Molecular Biologyvol. 2 pp13.12.1–13.12.5 Edited by Ausubel F. M.. New York: Wiley;
    [Google Scholar]
  5. Cormack B. P., Bertram G., Egerton M., Gow N. A., Falkow S., Brown A. J. 1997; Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans. Microbiology143:303–311[CrossRef]
    [Google Scholar]
  6. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics134:717–728
    [Google Scholar]
  7. Fu Y., Ibrahim A. S., Sheppard D. C., Chen Y. C., French S. W., Cutler J. E., Filler S. G., Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72[CrossRef]
    [Google Scholar]
  8. Gaur N. K., Klotz S. A. 1997; Expression, cloning, and characterization of a Candida albicans gene,ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun65:5289–5294
    [Google Scholar]
  9. Gerami-Nejad M., Berman J., Gale C. G. 2001; Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast18:859–864[CrossRef]
    [Google Scholar]
  10. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150:267–275[CrossRef]
    [Google Scholar]
  11. Heid C. A., Stevens J., Livak K. J., Williams P. M. 1996; Real-time quantitative PCR. Genome Res6:986–994[CrossRef]
    [Google Scholar]
  12. Hicks J. B., Herskowitz I. 1976; Interconversion of yeast mating types. I. Direct observations of the action of the homothallism (HO) gene. Genetics83:245–258
    [Google Scholar]
  13. Hoyer L. L. 2001; The ALS gene family of Candida albicans. Trends Microbiol9:176–180[CrossRef]
    [Google Scholar]
  14. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P. 1995; Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol15:39–54[CrossRef]
    [Google Scholar]
  15. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S. 1998a; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet33:451–459[CrossRef]
    [Google Scholar]
  16. Hoyer L. L., Payne T. L., Hecht J. E. 1998b; Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol180:5334–5343
    [Google Scholar]
  17. Jones T., Federspiel N. A., Chibana H.. 9 other authors 2004; The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A101:7329–7334[CrossRef]
    [Google Scholar]
  18. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun70:878–888[CrossRef]
    [Google Scholar]
  19. Mann J. L. 1983; Autofluorescence of fungi: an aid to detection in tissue sections. Am J Clin Pathol79:587–590
    [Google Scholar]
  20. Murad A. M., Lee P. R., Broadbent I. D., Barelle C. J., Brown A. J. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast16:325–327[CrossRef]
    [Google Scholar]
  21. Oh S.-H., Cheng G., Nuessen J. A., Jajko R., Yeater K. M., Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2005; Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology151:673–681[CrossRef]
    [Google Scholar]
  22. Porta A., Ramon A. M., Fonzi W. A. 1999; PRR1, a homolog ofAspergillus nidulans palF, control pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol181:7516–7523
    [Google Scholar]
  23. Sheppard D. C., Yeaman M. R., Welch W. H.. 8 other authors 2004; Functional and structural diversity in the Als protein family of. Candida albicans J Biol Chem279:30480–30489[CrossRef]
    [Google Scholar]
  24. Wojciechowicz D., Lu C. F., Kurjan J., Lipke P. 1993; Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol13:2554–2563
    [Google Scholar]
  25. Zhang N. Harrex A. L., Holland B. R., Fenton L. E., Cannon R. D., Schmid J. 2003; Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res13:2005–2017[CrossRef]
    [Google Scholar]
  26. Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2003; Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology149:2947–2960[CrossRef]
    [Google Scholar]
  27. Zhao X., Oh S.-H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J. P., Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparison between Als3p and Als1p. Microbiology150:2415–2428[CrossRef]
    [Google Scholar]
  28. Zhao X., Oh S.-H., Yeater K. M., Hoyer L. L. 2005; Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology151: in press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27696-0
Loading
/content/journal/micro/10.1099/mic.0.27696-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error