1887

Abstract

During spore formation, many membrane proteins that function in spore development localize to the prespore septum and, subsequently, to the outer prespore membrane. Recently, it was shown that the cell-division-specific penicillin-binding proteins (PBPs) 1 and 2b localize to the asymmetric prespore septum. Here, the author studied the localization of other PBPs, fused to green fluorescent protein (GFP), during spore formation. Fusions to PBPs 4, 2c, 2d, 2a, 3, H, 4b, 5, 4a, 4* and X were expressed during vegetative growth, and their localization was monitored during sporulation. Of these PBPs, 2c, 2d, 4b and 4* have been implicated as having a function in sporulation. It was found that PBP2c, 2d and X changed their localization, while the other PBPs tested were not affected. The putative endopeptidase PbpX appears to spiral out in a pattern that resembles FtsZ redistribution during sporulation, but a knockout strain had no distinguishable phenotype. PBP2c and 2d localize to the prespore septum and follow the membrane during engulfment, and so are redistributed to the prespore membrane. A similar pattern was observed when GFP–PBP2c was expressed in the mother cell from a sporulation-specific promoter. This work shows that various PBPs known to function during sporulation are redistributed from the cytoplasmic membrane to the prespore.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27692-0
2005-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510999.html?itemId=/content/journal/micro/10.1099/mic.0.27692-0&mimeType=html&fmt=ahah

References

  1. Abanes-De Mello, A., Sun, Y. L., Aung, S. & Pogliano, K. ( 2002; ). A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev 16, 3253–3264.[CrossRef]
    [Google Scholar]
  2. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741–746.
    [Google Scholar]
  3. Barák, I. & Youngman, P. ( 1996; ). SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J Bacteriol 178, 4984–4989.
    [Google Scholar]
  4. Ben-Yehuda, S. & Losick, R. ( 2002; ). Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266.[CrossRef]
    [Google Scholar]
  5. Buchanan, C. E. & Ling, M.-L. ( 1992; ). Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J Bacteriol 174, 1717–1725.
    [Google Scholar]
  6. Cao, M. & Helmann, J. D. ( 2004; ). The Bacillus subtilis extracytoplasmic-function σ X factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186, 1136–1146.[CrossRef]
    [Google Scholar]
  7. Cormack, B. P., Valdivia, R. H. & Falkow, S. ( 1996; ). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.[CrossRef]
    [Google Scholar]
  8. Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. ( 1994; ). The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J Mol Biol 235, 209–220.[CrossRef]
    [Google Scholar]
  9. Daniel, R. A., Williams, A. M. & Errington, J. ( 1996; ). A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J Bacteriol 178, 2343–2350.
    [Google Scholar]
  10. Daniel, R. A., Harry, E. J. & Errington, J. ( 2000; ). Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35, 299–311.[CrossRef]
    [Google Scholar]
  11. Eichenberger, P., Jensen, S. T., Conlon, E. M. & 8 other authors ( 2003; ). The σ E regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327, 945–972.[CrossRef]
    [Google Scholar]
  12. Errington, J. ( 1986; ). A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. J Gen Microbiol 132, 2953–2966.
    [Google Scholar]
  13. Errington, J. ( 2003a; ). Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1, 117–126.[CrossRef]
    [Google Scholar]
  14. Errington, J. ( 2003b; ). Dynamic proteins and a cytoskeleton in bacteria. Nat Cell Biol 5, 175–178.[CrossRef]
    [Google Scholar]
  15. Errington, J. & Mandelstam, J. ( 1983; ). Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoIIA, in Bacillus subtilis. J Gen Microbiol 129, 2091–2101.
    [Google Scholar]
  16. Errington, J., Daniel, R. A. & Scheffers, D.-J. ( 2003; ). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67, 52–65.[CrossRef]
    [Google Scholar]
  17. Feucht, A., Magnin, T., Yudkin, M. D. & Errington, J. ( 1996; ). Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev 10, 794–803.[CrossRef]
    [Google Scholar]
  18. Foster, S. J. & Popham, D. L. ( 2001; ). Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 21–41. Edited by L. Sonenshein, R. Losick & J. A. Hoch. Washington, DC: American Society for Microbiology.
  19. Gerdes, K., Moller-Jensen, J., Ebersbach, G., Kruse, T. & Nordstrom, K. ( 2004; ). Bacterial mitotic machineries. Cell 116, 359–366.[CrossRef]
    [Google Scholar]
  20. Glenn, A. R. & Mandelstam, J. ( 1971; ). Sporulation in Bacillus subtilis 168. Comparison of alkaline phosphatase from sporulating and vegetative cells. Biochem J 123, 129–138.
    [Google Scholar]
  21. Hilbert, D. W. & Piggot, P. J. ( 2004; ). Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68, 234–262.[CrossRef]
    [Google Scholar]
  22. Huang, X. & Helmann, J. D. ( 1998; ). Identification of target promoters for the Bacillus subtilis σ X factor using a consensus-directed search. J Mol Biol 279, 165–173.[CrossRef]
    [Google Scholar]
  23. Huang, X., Decatur, A., Sorokin, A. & Helmann, J. D. ( 1997; ). The Bacillus subtilis σ X protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. J Bacteriol 179, 2915–2921.
    [Google Scholar]
  24. Jenkinson, H. F. ( 1983; ). Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol 129, 1945–1958.
    [Google Scholar]
  25. Kobayashi, K., Ehrlich, S. D., Albertini, A. & 96 other authors ( 2003; ). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100, 4678–4683.[CrossRef]
    [Google Scholar]
  26. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403–2407.
    [Google Scholar]
  27. Levin, P. A. & Losick, R. ( 1996; ). Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev 10, 478–488.[CrossRef]
    [Google Scholar]
  28. Levin, P. A., Losick, R., Stragier, P. & Arigoni, F. ( 1997; ). Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol Microbiol 25, 839–846.[CrossRef]
    [Google Scholar]
  29. Lewis, P. J. & Errington, J. ( 1996; ). Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142, 733–740.[CrossRef]
    [Google Scholar]
  30. Lewis, P. J. & Errington, J. ( 1997; ). Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol Microbiol 25, 945–954.[CrossRef]
    [Google Scholar]
  31. Maddock, J. & Shapiro, L. ( 1993; ). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723.[CrossRef]
    [Google Scholar]
  32. McPherson, D. C., Driks, A. & Popham, D. L. ( 2001; ). Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J Bacteriol 183, 6046–6053.[CrossRef]
    [Google Scholar]
  33. Morlot, C., Noirclerc-Savoye, M., Zapun, A., Dideberg, O. & Vernet, T. ( 2004; ). The carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51, 1641–1648.[CrossRef]
    [Google Scholar]
  34. Murray, T., Popham, D. L. & Setlow, P. ( 1996; ). Identification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3. J Bacteriol 178, 6001–6005.
    [Google Scholar]
  35. Partridge, S. R. & Errington, J. ( 1993; ). The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8, 945–955.[CrossRef]
    [Google Scholar]
  36. Pedersen, L. B., Ragkousi, K., Cammett, T. J., Melly, E., Sekowska, A., Schopick, E., Murray, T. & Setlow, P. ( 2000; ). Characterization of ywhE, which encodes a putative high-molecular-weight class A penicillin-binding protein in Bacillus subtilis. Gene 246, 187–196.[CrossRef]
    [Google Scholar]
  37. Piggot, P. J. & Losick, R. ( 2001; ). Sporulation genes and intercompartmental regulation. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 483–517. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  38. Pinho, M. G. & Errington, J. ( 2005; ). Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol Microbiol (in press) (doi:10.1111/j.1365-2958.2004.04420.x).
    [Google Scholar]
  39. Popham, D. L. ( 2002; ). Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59, 426–433.[CrossRef]
    [Google Scholar]
  40. Popham, D. L. & Setlow, P. ( 1993a; ). Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J Bacteriol 175, 4870–4876.
    [Google Scholar]
  41. Popham, D. L. & Setlow, P. ( 1993b; ). Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase. J Bacteriol 175, 2917–2925.
    [Google Scholar]
  42. Popham, D. L. & Setlow, P. ( 1995; ). Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol 177, 326–335.
    [Google Scholar]
  43. Popham, D. L. & Setlow, P. ( 1996; ). Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J Bacteriol 178, 2079–2085.
    [Google Scholar]
  44. Popham, D. L., Illades-Aguiar, B. & Setlow, P. ( 1995; ). The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol 177, 4721–4729.
    [Google Scholar]
  45. Popham, D. L., Gilmore, M. E. & Setlow, P. ( 1999; ). Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181, 126–132.
    [Google Scholar]
  46. Price, K. D. & Losick, R. ( 1999; ). A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J Bacteriol 181, 781–790.
    [Google Scholar]
  47. Rubio, A. & Pogliano, K. ( 2004; ). Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 23, 1636–1646.[CrossRef]
    [Google Scholar]
  48. Rudner, D. Z., Pan, Q. & Losick, R. M. ( 2002; ). Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc Natl Acad Sci U S A 99, 8701–8706.[CrossRef]
    [Google Scholar]
  49. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  50. Scheffers, D.-J. & Errington, J. ( 2004; ). PBP1 is a component of the Bacillus subtilis cell division machinery. J Bacteriol 186, 5153–5156.[CrossRef]
    [Google Scholar]
  51. Scheffers, D.-J., Jones, L. J. F. & Errington, J. ( 2004; ). Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 51, 749–764.
    [Google Scholar]
  52. Schuch, R. & Piggot, P. J. ( 1994; ). The dacF–spoIIA operon of Bacillus subtilis, encoding σ F, is autoregulated. J Bacteriol 176, 4104–4110.
    [Google Scholar]
  53. Sharp, M. D. & Pogliano, K. ( 1999; ). An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci U S A 96, 14553–14558.[CrossRef]
    [Google Scholar]
  54. Sharp, M. D. & Pogliano, K. ( 2002; ). Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295, 137–139.[CrossRef]
    [Google Scholar]
  55. Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. ( 1998; ). Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of the cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180, 547–555.
    [Google Scholar]
  56. Simpson, E. B., Hancock, T. W. & Buchanan, C. E. ( 1994; ). Transcriptional control of dacB, which encodes a major sporulation-specific penicillin-binding protein. J Bacteriol 176, 7767–7769.
    [Google Scholar]
  57. Sowell, M. O. & Buchanan, C. E. ( 1983; ). Changes in penicillin-binding proteins during sporulation of Bacillus subtilis. J Bacteriol 153, 1331–1337.
    [Google Scholar]
  58. Sterlini, J. M. & Mandelstam, J. ( 1969; ). Committment to sporulation in Bacillus subtilis and its relationship to the development of actinomycin resistance. Biochem J 113, 29–37.
    [Google Scholar]
  59. Todd, J. A., Bone, E. J., Piggot, P. J. & Ellar, D. J. ( 1983; ). Differential expression of penicillin-binding protein structural genes during Bacillus subtilis sporulation. FEMS Microbiol Lett 18, 197–202.[CrossRef]
    [Google Scholar]
  60. Todd, J. A., Roberts, A. N., Johnstone, K., Piggot, P. J., Winter, G. & Ellar, D. J. ( 1986; ). Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5. J Bacteriol 167, 257–264.
    [Google Scholar]
  61. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.[CrossRef]
    [Google Scholar]
  62. Van Ooij, C., Eichenberger, P. & Losick, R. ( 2004; ). Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis. J Bacteriol 186, 4441–4448.[CrossRef]
    [Google Scholar]
  63. Wei, Y., McPherson, D. C. & Popham, D. L. ( 2004; ). A mother cell-specific class B penicillin-binding protein, PBP4b, in Bacillus subtilis. J Bacteriol 186, 258–261.[CrossRef]
    [Google Scholar]
  64. Wu, L. J. & Errington, J. ( 2003; ). RacA and the Soj–Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49, 1463–1475.[CrossRef]
    [Google Scholar]
  65. Wu, J.-J., Schuch, R. & Piggot, P. J. ( 1992; ). Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase σ factor and for a putative DD-carboxypeptidase. J Bacteriol 174, 4885–4892.
    [Google Scholar]
  66. Wu, L. J., Feucht, A. & Errington, J. ( 1998; ). Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev 12, 1371–1380.[CrossRef]
    [Google Scholar]
  67. Zellmeier, S., Zuber, U., Schumann, W. & Wiegert, T. ( 2003; ). The absence of FtsH metalloprotease activity causes overexpression of the σ W-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. J Bacteriol 185, 973–982.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27692-0
Loading
/content/journal/micro/10.1099/mic.0.27692-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error