1887

Abstract

strain SC5314 contains two alleles, which differ in sequence with respect to the number of copies of the 108 bp tandem repeat sequence within the central domain of the coding region. One allele (()) has 12 tandem repeat copies while the other (()) has 9 copies. Wild-type (()/()) and those containing various alleles (()/Δ(), Δ()/() and Δ()/Δ()) were assayed for adhesion to monolayers of cultured vascular endothelial and pharyngeal epithelial cells. These assays showed obvious adhesive function for the larger Als3p protein, compared to a minor contribution to adhesion from the smaller protein. These functional differences in strain SC5314 prompted examination of allelic diversity across the five major genetic clades of . This analysis focused on the number of copies of the tandem repeat sequence within the central domain of the coding region and showed a range of alleles encoding from 6 to 19 tandem repeat copies. Clades differed with respect to prevalent alleles and allele distribution, but were similar for the mean number of tandem repeat copies per allele. Analysis of allelic pairing showed clade differences and the tendency for strains to encode one longer and one shorter allele. The allelic variability observed for and its functional consequences observed in strain SC5314 highlight the importance of understanding ALS allelic diversity in order to draw accurate conclusions about Als protein function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27680-0
2005-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510673.html?itemId=/content/journal/micro/10.1099/mic.0.27680-0&mimeType=html&fmt=ahah

References

  1. Agapow P.-M., Burt A. 2001; Indices of multilocus linkage disequilibrium. Mol Ecol Notes1:101–102[CrossRef]
    [Google Scholar]
  2. Blignaut E., Pujol C., Lockhart S., Joly S., Soll D. R. 2002; Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J Clin Microbiol40:826–836[CrossRef]
    [Google Scholar]
  3. Collart M. A., Oliviero S. 1993; Preparation of yeast RNA. In Current Protocols in Molecular Biology vol 2 pp13.12.1–13.12.5 Edited by Ausubel F. M.. New York: Wiley;
    [Google Scholar]
  4. Dodgson A. R., Dodgson K. J., Pujol C., Pfaller M. A., Soll D. R. 2004; Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene ofCandida albicans. Antimicrob Agents Chemother48:2223–2227[CrossRef]
    [Google Scholar]
  5. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics134:717–728
    [Google Scholar]
  6. Frieman M. B., McCaffery J. M., Cormack B. P. 2002; Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol Microbiol46:479–492[CrossRef]
    [Google Scholar]
  7. Fu Y., Ibrahim A. S., Sheppard D. C., Chen Y. C., French S. W., Cutler J. E., Filler S. G., Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72[CrossRef]
    [Google Scholar]
  8. Gaur N. K., Klotz S. A. 1997; Expression, cloning, and characterization of a Candida albicans gene,ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun65:5289–5294
    [Google Scholar]
  9. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150:267–275[CrossRef]
    [Google Scholar]
  10. Hoyer L. L. 2001; The ALS gene family of Candida albicans. Trends Microbiol9:176–180[CrossRef]
    [Google Scholar]
  11. Hoyer L. L., Hecht J. E. 2001; The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast18:49–60[CrossRef]
    [Google Scholar]
  12. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P. 1995; Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol15:39–54[CrossRef]
    [Google Scholar]
  13. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S. 1998; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet33:451–459[CrossRef]
    [Google Scholar]
  14. Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E. Jr, Nozawa Y., Ghannoum M. A. 1995; Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun63:1993–1998
    [Google Scholar]
  15. Kapteyn J. C., Hoyer L. L., Hecht J. E., Muller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  16. Lott T. J., Holloway B. P., Logan D. A., Fundyga R., Arnold J. 1999; Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology145:1137–1143[CrossRef]
    [Google Scholar]
  17. Porta A., Ramon A. M., Fonzi W. A. 1999; PRR1, a homolog ofAspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol181:7516–7523
    [Google Scholar]
  18. Pujol C., Joly S., Lockhart S. R., Noel S., Tibayrenc M., Soll D. R. 1997; Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J Clin Microbiol35:2348–2358
    [Google Scholar]
  19. Pujol C., Joly S., Nolan B., Srikantha T., Soll D. R. 1999; Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology145:2635–2646
    [Google Scholar]
  20. Pujol C., Pfaller M. A., Soll D. R. 2002; Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J Clin Microbiol40:2729–2740[CrossRef]
    [Google Scholar]
  21. Pujol C., Pfaller M. A., Soll D. R. 2004; Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob Agents Chemother48:262–266[CrossRef]
    [Google Scholar]
  22. Soll D. R. 2000; The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev13:332–370[CrossRef]
    [Google Scholar]
  23. Soll D. R., Pujol C. 2003; Candida albicans clades. FEMS Immunol Med Microbiol39:1–7[CrossRef]
    [Google Scholar]
  24. Weir B. S. 1996; Genetic Data Analysis II Sunderland, MA, USA: Sinauer Associates;
    [Google Scholar]
  25. Zhang N., Harrex A. L., Holland B. R., Fenton L. E., Cannon R., Schmid J. 2003; Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res13:2005–2017[CrossRef]
    [Google Scholar]
  26. Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2003; Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology149:2947–2960[CrossRef]
    [Google Scholar]
  27. Zhao X., Oh S.-H., Cheng G., Green C. B., Nuessen J. A., Yeater K. M., Leng R. P., Brown A. J. P., Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology150:2415–2428[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27680-0
Loading
/content/journal/micro/10.1099/mic.0.27680-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error