1887

Abstract

Coenzyme F is the central low-redox-potential electron carrier in methanogenic metabolism. The coenzyme is reduced under hydrogen by the action of F-dependent hydrogenase. The standard free-energy change at pH 7 of F reduction was determined to be −15 kJ mol, irrespective of the temperature (25–65 °C). Experiments performed with methane-forming cell suspensions of incubated under various conditions demonstrated that the ratios of reduced and oxidized F were in thermodynamic equilibrium with the gas-phase hydrogen partial pressures. During growth in a fed-batch fermenter, ratios changed in connection with the decrease in dissolved hydrogen. For most of the time, the changes were as expected for thermodynamic equilibrium between the oxidation state of F inside the cells and extracellular hydrogen. Also, methanol-metabolizing, but not acetate-converting, cells of maintained the ratios of reduced and oxidized coenzyme F in thermodynamic equilibrium with external hydrogen. The results of the study demonstrate that F is a useful probe to assess hydrogen concentrations in H-metabolizing methanogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27679-0
2005-05-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511697.html?itemId=/content/journal/micro/10.1099/mic.0.27679-0&mimeType=html&fmt=ahah

References

  1. de Poorter, L. M. I. & Keltjens, J. T. ( 2001; ). Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the archaeon Methanobacterium thermoautotrophicum. J Microbiol Methods 47, 233–241.[CrossRef]
    [Google Scholar]
  2. de Poorter, L. M. I., Geerts, W. G., Theuvenet, A. P. R. & Keltjens, J. T. ( 2003; ). Bioenergetics of the formyl-methanofuran dehydrogenase and heterodisulfide reductase reactions in Methanothermobacter thermautotrophicus. Eur J Biochem 270, 66–75.
    [Google Scholar]
  3. DiMarco, A. A., Bobik, T. A. & Wolfe, R. S. ( 1990; ). Unusual coenzymes of methanogenesis. Annu Rev Biochem 59, 355–394.[CrossRef]
    [Google Scholar]
  4. Eirich, L. D., Vogels, G. D. & Wolfe, R. S. ( 1978; ). Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17, 4583–4593.[CrossRef]
    [Google Scholar]
  5. Eirich, L. D., Vogels, G. D. & Wolfe, R. S. ( 1979; ). Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol 140, 20–27.
    [Google Scholar]
  6. Enßle, M., Zirngibl, C., Linder, D. & Thauer, R. K. ( 1991; ). Coenzyme F420 dependent N 5,N 10-methylenetetrahydromethanopterin dehydrogenase in methanol-grown Methanosarcina barkeri. Arch Microbiol 155, 483–490.[CrossRef]
    [Google Scholar]
  7. Fox, J. A., Livingston, D. J., Orme-Johnson, W. H. & Walsh, C. T. ( 1987; ). 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26, 4219–4227.[CrossRef]
    [Google Scholar]
  8. Gijzen, H. J., Broers, C. A. M., Barughare, M. & Stumm, C. K. ( 1991; ). Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57, 1630–1634.
    [Google Scholar]
  9. Heine-Dobbernack, E., Schoberth, S. M. & Sahm, H. ( 1988; ). Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol 54, 454–459.
    [Google Scholar]
  10. Hutten, T. J., de Jong, M. H., Peeters, B. P. H., van der Drift, C. & Vogels, G. D. ( 1981; ). Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri. J Bacteriol 145, 27–34.
    [Google Scholar]
  11. Jacobson, F. & Walsh, C. ( 1984; ). Properties of 7,8-didemethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism. Biochemistry 23, 979–988.[CrossRef]
    [Google Scholar]
  12. Lovley, D. R. & Ferry, J. G. ( 1985; ). Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49, 247–249.
    [Google Scholar]
  13. Ma, K. & Thauer, R. K. ( 1990; ). Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191, 187–193.[CrossRef]
    [Google Scholar]
  14. Michel, R., Massanz, C., Kostka, S., Richter, M. & Fiebig, K. ( 1995; ). Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro. Eur J Biochem 233, 727–735.[CrossRef]
    [Google Scholar]
  15. Pennings, J. L. A., Vermeij, P., de Poorter, L. M. I., Keltjens, J. T. & Vogels, G. D. ( 2000; ). Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain ΔH) in a fed-batch fermentor. Antonie van Leeuwenhoek 77, 281–291.[CrossRef]
    [Google Scholar]
  16. Pol, A., van der Drift, C., Vogels, G. D., Cuppen, T. J. H. M. & Laarhoven, W. H. ( 1980; ). Comparison of coenzyme F420 from Methanobacterium bryantii with 7- and 8-hydroxyl-10-methyl-5-deazaisoalloxazine. Biochem Biophys Res Commun 92, 255–260.[CrossRef]
    [Google Scholar]
  17. Purwantini, E., Mukhopadhyay, B., Spencer, R. W. & Daniels, L. ( 1992; ). Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem 205, 342–350.[CrossRef]
    [Google Scholar]
  18. Schill, N., van Gulik, W. M., Voisard, D. & von Stockar, U. ( 1996; ). Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51, 645–658.
    [Google Scholar]
  19. Schönheit, P., Moll, J. & Thauer, R. K. ( 1979; ). Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123, 105–107.[CrossRef]
    [Google Scholar]
  20. Schwörer, B. & Thauer, R. K. ( 1991; ). Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155, 459–465.[CrossRef]
    [Google Scholar]
  21. te Brömmelstroet, B. W., Hensgens, C. M. H., Keltjens, J. T., van der Drift, C. & Vogels, G. D. ( 1990; ). Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain ΔH. J Biol Chem 265, 1852–1857.
    [Google Scholar]
  22. te Brömmelstroet, B. W., Geerts, W. J., Keltjens, J. T., van der Drift, C. & Vogels, G. D. ( 1991a; ). Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. Biochim Biophys Acta 1079, 293–302.[CrossRef]
    [Google Scholar]
  23. te Brömmelstroet, B. W., Hensgens, C. M. H., Keltjens, J. T., van der Drift, C. & Vogels, G. D. ( 1991b; ). Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochim Biophys Acta 1073, 77–84.[CrossRef]
    [Google Scholar]
  24. Thauer, R. K. ( 1998; ). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 2377–2406.[CrossRef]
    [Google Scholar]
  25. Vaupel, M. & Thauer, R. K. ( 1998; ). Two F420-reducing hydrogenases in Methanosarcina barkeri. Arch Microbiol 169, 201–205.[CrossRef]
    [Google Scholar]
  26. Vermeij, P., Pennings, J. L. A., Maassen, S. M., Keltjens, J. T. & Vogels, G. D. ( 1997; ). Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum strain ΔH. J Bacteriol 179, 6640–6648.
    [Google Scholar]
  27. von Felten, P. & Bachofen, R. ( 2000; ). Continuous monitoring of the cytoplasmic pH in Methanobacterium thermoautotrophicum using the intracellular factor F420 as indicator. Microbiology 146, 3245–3250.
    [Google Scholar]
  28. Zehnder, A. J. B. & Wuhrmann, K. ( 1976; ). Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194, 1165–1166.[CrossRef]
    [Google Scholar]
  29. Zinder, S. H. ( 1993; ). Physiological ecology of methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, pp. 128–206. Edited by J. G. Ferry. New York: Chapman & Hall.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27679-0
Loading
/content/journal/micro/10.1099/mic.0.27679-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error