1887

Abstract

Yeast wall protein 1 (Ywp1, also called Pga24) of is predicted to be a 533 aa polypeptide with an N-terminal secretion signal, a C-terminal glycosylphosphatidylinositol anchor signal and a central region rich in serine and threonine. In yeast cultures, Ywp1p appeared to be linked covalently to glucans of the wall matrix, but, as cultures approached stationary phase, Ywp1p accumulated in the medium and was extractable from cells with disulfide-reducing agents. An 11 kDa propeptide of Ywp1p was also present in these soluble fractions; it possessed the sole -glycan of Ywp1p and served as a useful marker for Ywp1p. DNA vaccines encoding all or part of Ywp1p generated analytically useful antisera in mice, but did not increase survival times for disseminated candidiasis. Replacement of the coding sequence of with the fluorescent reporter revealed that expression of is greatest during yeast exponential-phase growth, but downregulated in stationary phase and upon filamentation. Expression was upregulated when the extracellular phosphate concentration was low. Disruption by homologous recombination of both alleles resulted in no obvious change in growth, morphology or virulence, but the Ywp1p-deficient blastoconidia exhibited increased adhesiveness and biofilm formation, suggesting that Ywp1p may promote dispersal of yeast forms of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27663-0
2005-05-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511631.html?itemId=/content/journal/micro/10.1099/mic.0.27663-0&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol8:115–118
    [Google Scholar]
  2. Annes J. P., Munger J. S., Rifkin D. B. 2003; Making sense of latent TGFβ activation. J Cell Sci116:217–224[CrossRef]
    [Google Scholar]
  3. Bain J. M., Stubberfield C., Gow N. A. R. 2001; Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett204:323–328[CrossRef]
    [Google Scholar]
  4. Bennett R. J., Uhl M. A., Miller M. G., Johnson A. D. 2003; Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol23:8189–8201[CrossRef]
    [Google Scholar]
  5. Brawner D. L., Cutler J. E. 1989; Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patients with or without acquired immunodeficiency syndrome. J Clin Microbiol27:1335–1341
    [Google Scholar]
  6. Cargile B. J., Talley D. L., Stephenson J. L.. Jr 2004; Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides. Electrophoresis25:936–945[CrossRef]
    [Google Scholar]
  7. Chaffin W. L., Casanova M., Gozalbo D, López-Ribot J. L., Martínez J. P. 1998; Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev62:130–180
    [Google Scholar]
  8. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol183:5385–5394[CrossRef]
    [Google Scholar]
  9. Chattaway F. W., Shenolikar S., Barlow A. J. E. 1974; The release of acid phosphatase and polysaccharide- and protein-containing components from the surface of the dimorphic forms of Candida albicans by treatment with dithiothreitol. J Gen Microbiol83:423–425[CrossRef]
    [Google Scholar]
  10. Chen P. S Jr, Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Anal Chem28:1756–1758[CrossRef]
    [Google Scholar]
  11. Chen J. W., Pan W., D'Souza M. P., August J. T. 1985; Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys239:574–586[CrossRef]
    [Google Scholar]
  12. Cormack B. P., Bertram G., Egerton M., Gow N. A. R., Falkow S., Brown A. J. P. 1997; Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology143:303–311[CrossRef]
    [Google Scholar]
  13. Cutler J. E., Granger B. L., Han Y. 2002; Immunoprotection against candidiasis. In Candida and Candidiasis pp243–256 Edited by Calderone R. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Davis D., Edwards J. E. Jr, Mitchell A. P., Ibrahim A. S. 2000; Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun68:5953–5959[CrossRef]
    [Google Scholar]
  15. de Groot P. W. J., Hellingwerf K. J., Klis F. M. 2003; Genome-wide identification of fungal GPI proteins. Yeast20:781–796[CrossRef]
    [Google Scholar]
  16. de Groot P. W. J., de Boer A. D., Cunningham J., Dekker H. L., de Jong L., Hellingwerf K. J., de Koster C., Klis F. M. 2004; Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell3:955–965[CrossRef]
    [Google Scholar]
  17. de Nobel J. G., Barnett J. A. 1991; Passage of molecules through yeast cell walls: a brief essay-review. Yeast7:313–323[CrossRef]
    [Google Scholar]
  18. de Nobel H., Lipke P. N. 1994; Is there a role for GPIs in yeast cell-wall assembly?. Trends Cell Biol4:42–45[CrossRef]
    [Google Scholar]
  19. de Nobel J. G., Klis F. M., Priem J., Munnik T., van den Ende H. 1990; The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast6:491–499[CrossRef]
    [Google Scholar]
  20. Doedt T., Krishnamurthy S., Tebarth B., Stempel C., Russell C. L., Brown A. J. P., Ernst J. F, Bockmühl D. P.. 2004; APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell15:3167–3180[CrossRef]
    [Google Scholar]
  21. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol11:30–36[CrossRef]
    [Google Scholar]
  22. Dujon B., Sherman D., Fischer G. & 64 other authors. 2004; Genome evolution in yeasts. Nature430:35–44[CrossRef]
    [Google Scholar]
  23. Eder J., Fersht A. R. 1995; Pro-sequence-assisted protein folding. Mol Microbiol16:609–614[CrossRef]
    [Google Scholar]
  24. Enloe B., Diamond A., Mitchell A. P. 2000; A single-transformation gene function test in diploid Candida albicans. J Bacteriol182:5730–5736[CrossRef]
    [Google Scholar]
  25. García-Sánchez S., Iraqui I., Janbon G., Ghigo J.-M., d'Enfert C, Aubert S.. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell3:536–545[CrossRef]
    [Google Scholar]
  26. Gerami-Nejad M., Berman J., Gale C. A. 2001; Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast18:859–864[CrossRef]
    [Google Scholar]
  27. Gietz R. D., Woods R. A. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol350:87–96
    [Google Scholar]
  28. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation ofS. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet198:179–182[CrossRef]
    [Google Scholar]
  29. Golvano J., Lasarte J. J., Sarobe P., Prieto J, Gullón A., Borrás-Cuesta F. 1990; Polarity of immunogens: implications for vaccine design. Eur J Immunol20:2363–2366[CrossRef]
    [Google Scholar]
  30. Gow N. A. R., Brown A. J. P., Odds F. C. 2002; Fungal morphogenesis and host invasion. Curr Opin Microbiol5:366–371[CrossRef]
    [Google Scholar]
  31. Granger B. L., Green S. A., Gabel C. A., Howe C. L., Mellman I., Helenius A. 1990; Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem265:12036–12043
    [Google Scholar]
  32. Granger B. L., Flenniken M. L., Davis D. A., Mitchell A. P., Han Y., Han S. K., Cutler J. E. 2001; Identification of a novel, thiol-extractable mannoprotein of Candida albicans. In Abstracts of the 101st General Meeting of the American Society for Microbiology abstract F-46 Orlando, FL, USA:
    [Google Scholar]
  33. Han Y., Cutler J. E. 1995; Antibody response that protects against disseminated candidiasis. Infect Immun63:2714–2719
    [Google Scholar]
  34. Han Y., Kanbe T., Cherniak R., Cutler J. E. 1997; Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun65:4100–4107
    [Google Scholar]
  35. Han Y., Ulrich M. A., Cutler J. E. 1999; Candida albicans mannan extract–protein conjugates induce a protective immune response against experimental candidiasis. J Infect Dis179:1477–1484[CrossRef]
    [Google Scholar]
  36. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272[CrossRef]
    [Google Scholar]
  37. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68[CrossRef]
    [Google Scholar]
  38. Hoyer L. L. 2001; The ALS gene family of Candida albicans. Trends Microbiol9:176–180[CrossRef]
    [Google Scholar]
  39. Jones T., Federspiel N. A., Chibana H. & 9 other authors. 2004; The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A101:7329–7334[CrossRef]
    [Google Scholar]
  40. Kapteyn J. C., Hoyer L. L., Hecht J. E., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M, Müller W. H.. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  41. Kemner K. M., Kelly S. D., Lai B. & 7 other authors. 2004; Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science306:686–687[CrossRef]
    [Google Scholar]
  42. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun70:878–888[CrossRef]
    [Google Scholar]
  43. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  44. Lan C.-Y., Newport G., Murillo L. A., Jones T., Scherer S., Davis R. W., Agabian N. 2002; Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A99:14907–14912[CrossRef]
    [Google Scholar]
  45. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia13:148–153[CrossRef]
    [Google Scholar]
  46. Lee S. A., Wormsley S., Kamoun S., Lee A. F. S., Joiner K., Wong B. 2003; An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast20:595–610[CrossRef]
    [Google Scholar]
  47. Li X., Yan Z., Xu J. 2003; Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology149:353–362[CrossRef]
    [Google Scholar]
  48. Lillie S. H., Pringle J. R. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol143:1384–1394
    [Google Scholar]
  49. Maecker H. T., Umetsu D. T., DeKruyff R. H., Levy S. 1997; DNA vaccination with cytokine fusion constructs biases the immune response to ovalbumin. Vaccine15:1687–1696[CrossRef]
    [Google Scholar]
  50. Mann M., Hendrickson R. C., Pandey A. 2001; Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem70:437–473[CrossRef]
    [Google Scholar]
  51. Masuoka J. 2004; Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev17:281–310[CrossRef]
    [Google Scholar]
  52. Munro C. A., Whitton R. K., Hughes H. B., Rella M., Selvaggini S., Gow N. A. R. 2003; CHS8 – a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol40:146–158[CrossRef]
    [Google Scholar]
  53. Nantel A., Dignard D., Bachewich C. & 12 other authors. 2002; Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell13:3452–3465[CrossRef]
    [Google Scholar]
  54. Newport G., Agabian N. 1997; KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem272:28954–28961[CrossRef]
    [Google Scholar]
  55. Newport G., Kuo A., Flattery A., Gill C., Blake J. J., Kurtz M. B., Abruzzo G. K., Agabian N. 2003; Inactivation of Kex2p diminishes the virulence of Candida albicans. J Biol Chem278:1713–1720[CrossRef]
    [Google Scholar]
  56. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6[CrossRef]
    [Google Scholar]
  57. Nitz M., Ling C.-C., Otter A., Cutler J. E., Bundle D. R. 2002; The unique solution structure and immunochemistry of the Candida albicans β-1,2-mannopyranan cell wall antigens. J Biol Chem277:3440–3446[CrossRef]
    [Google Scholar]
  58. Ogawa N., DeRisi J., Brown P. O. 2000; New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell11:4309–4321[CrossRef]
    [Google Scholar]
  59. Olsson I., Larsson K., Palmgren R., Bjellqvist B. 2002; Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension. Proteomics2:1630–1632[CrossRef]
    [Google Scholar]
  60. Pincus S. H., Smith M. J., Jennings H. J., Burritt J. B., Glee P. M. 1998; Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen. J Immunol160:293–298
    [Google Scholar]
  61. Redding K., Holcomb C., Fuller R. S. 1991; Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J Cell Biol113:527–538[CrossRef]
    [Google Scholar]
  62. Resende C., Parham S. N., Tinsley C., Ferreira P., Duarte J. A. B., Tuite M. F. 2002; The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism. Microbiology148:1049–1060
    [Google Scholar]
  63. Rockwell N. C., Thorner J. W. 2004; The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci29:80–87[CrossRef]
    [Google Scholar]
  64. Rothbard J. B., Taylor W. R. 1988; A sequence pattern common to T cell epitopes. EMBO J7:93–100
    [Google Scholar]
  65. Rowell J. F., Ruff A. L., Guarnieri F. G., Staveley-O'Carroll K., Lin X., Tang J., August J. T., Siliciano R. F. 1995; Lysosome-associated membrane protein-1-mediated targeting of the HIV-1 envelope protein to an endosomal/lysosomal compartment enhances its presentation to MHC class II-restricted T cells. J Immunol155:1818–1828
    [Google Scholar]
  66. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell2:1053–1060[CrossRef]
    [Google Scholar]
  67. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379[CrossRef]
    [Google Scholar]
  68. Sohn K., Urban C., Brunner H., Rupp S. 2003; EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol47:89–102
    [Google Scholar]
  69. Sommer J. R. 1977; To cationize glass. J Cell Biol75:245a
    [Google Scholar]
  70. Staab J. F., Bahn Y.-S., Sundstrom P. 2003; Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Candida albicans. Microbiology149:2977–2986[CrossRef]
    [Google Scholar]
  71. Sundstrom P. 2002; Adhesion in Candida spp. Cell Microbiol4:461–469[CrossRef]
    [Google Scholar]
  72. Uthayakumar S., Granger B. L. 1995; Cell surface accumulation of overexpressed hamster lysosomal membrane glycoproteins. Cell Mol Biol Res41:405–420
    [Google Scholar]
  73. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol181:1868–1874
    [Google Scholar]
  74. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast16:65–70[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27663-0
Loading
/content/journal/micro/10.1099/mic.0.27663-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error