1887

Abstract

Oxidized polyvinyl alcohol hydrolase (OPH) and polyvinyl alcohol dehydrogenase were found to be constitutively present in the periplasm of sp. strain 113P3 (formerly sp. 113P3). The OPH was purified to homogeneity with a yield of 40 % and a 5·9-fold increase in specific activity. The enzyme was a homodimer consisting of 35 kDa subunits. Its activity was inhibited by PMSF, Hg and Zn. The enzyme hydrolysed oxidized polyvinyl alcohol (oxidized PVA) and -nitrophenyl acetate (PNPA), but did not hydrolyse any of the mono- or diketones tested. and values for oxidized PVA and PNPA were 0·2 and 0·3 mM, and 0·1 and 3·4 μmol min mg, respectively. The gene for OPH was cloned and sequenced. Sequencing analysis revealed that the open reading frame consisted of 1095 bp, corresponding to a protein of 364 amino acids residues, encoding a signal peptide and a mature protein of 34 and 330 amino acids residues, respectively. The presence of a serine-hydrolase motif (a lipase box; Gly-X-Ser-X-Gly) strongly suggested that the enzyme belongs to the serine-hydrolase family. The protein exhibited homology with OPH of the sp. strain VM15C (63 % identity) and the polyhydroxybutyrate depolymerases from , sp. and (29–32 % identity). The gene was expressed in under the control of the promoter. The recombinant protein had the same molecular mass and N-terminal amino acid sequence as the purified OPH from strain 113P3.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27655-0
2005-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511255.html?itemId=/content/journal/micro/10.1099/mic.0.27655-0&mimeType=html&fmt=ahah

References

  1. Aebersold R. M., Leavitt J., Saavedra R. A., Hood L. E. 1987; Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A 84:6970–6974 [CrossRef]
    [Google Scholar]
  2. Anraku Y., Heppel L. A. 1967; On the nature of the changes induced in Escherichia coli by osmotic shock. J Biol Chem 242:2561–2569
    [Google Scholar]
  3. Bergmeyer H. U., Gowehn K., Grassl M. 1974; Enzymes as biochemical reagents. In Methods of Enzymatic Analysis, 2nd edn. pp 425–522 Edited by Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  4. Brenner S. 1988; The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528–530 [CrossRef]
    [Google Scholar]
  5. Garden A., Levinthal C. 1960; A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 38:470–483 [CrossRef]
    [Google Scholar]
  6. Hatanaka T., Asahi N., Tsuji M. 1995a; Purification and characterization of poly(vinyl alcohol) dehydrogenase from Pseudomonassp. 113P3. Biosci Biotechnol Biochem 59:1813–1816 [CrossRef]
    [Google Scholar]
  7. Hatanaka T., Kawahara T., Asahi N., Tsuji M. 1995b; Effects of the structure of poly(vinyl alcohol) on the dehydrogenation reaction by poly(vinyl alcohol) dehydrogenase fromPseudomonassp. 113P3. Biosci Biotechnol Biochem 59:1229–1231 [CrossRef]
    [Google Scholar]
  8. Hatanaka T., Hashimoto T., Kawahara T., Takami M., Asahi N., Wada R. 1996; Biodegradability of oxidized poly(vinyl alcohol. Biosci Biotechnol Biochem 60:1861–1863 [CrossRef]
    [Google Scholar]
  9. Jendrossek D., Backhaus M., Andermann M. 1995a; Characterization of the extracellular poly(3-hydroxybutyrate) depolymerase of Comamonas sp. and of its structural gene. Can J Microbiol 41:160–169 [CrossRef]
    [Google Scholar]
  10. Jendrossek D., Frisse A., Behrends A., Andermann M., Kratzin H. D., Stanislawski T., Schlegel H. G. 1995b; Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. J Bacteriol 177:596–607
    [Google Scholar]
  11. Kasai Y., Tanimura T., Tamura Z. 1975; Spectrophotometric determination of carboxlic acids by the formation of hydroxamic acids with dicyclohexylcarbodiimide. Anal Chem 47:34–37 [CrossRef]
    [Google Scholar]
  12. Kawai F. 1995; Breakdown of plastic and polymers by microorganisms. In Advances in Biochemical Engineering/Biotechnology vol 52 pp 201–225 Edited by Fiechter A. Berlin: Springer;
    [Google Scholar]
  13. Kawai F. 1999; Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol 23:400–407 [CrossRef]
    [Google Scholar]
  14. Kawai F., Enokibara S. 1996; Symbiotic degradation of polyethylene glycol (PEG) 20,000-phthalate polyester by phthalate ester- and PEG 20,000-utilizing bacteria. J Ferment Bioeng 82:575–579 [CrossRef]
    [Google Scholar]
  15. Kim B. C., Sohn C. K., Lim S. K., Lee J. W., Park W. 2003; Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote. J Ind Microbiol Biotechnol 30:70–74 [CrossRef]
    [Google Scholar]
  16. Kim C. H., Lee J. H., Heo J. H., Kwon O. S., Kang H. A., Rhee S. K. 2004; Cloning and expression of a novel esterase gene cpoA from Burkholderia cepacia. J Appl Microbiol 96:1306–1316 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Lassy R. A. L., Miller C. G. 2000; Peptidase E, a peptidase specific for N-terminal aspartic dipeptides, is a serine hydrolase. J Bacteriol 182:2536–2543 [CrossRef]
    [Google Scholar]
  19. Matsumura S., Tomizawa N., Toki A., Toshima K. 1998; Enzymatic degradation of poly(vinyl alcohol) and its copolymer. In Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers pp 230–238 Edited by Steinbüchel A. Weinheim: Wiley-VCH;
    [Google Scholar]
  20. Matsumura S., Tomizawa N., Toki A., Nishikawa K., Toshima K. 1999; Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules 32:7753–7761 [CrossRef]
    [Google Scholar]
  21. Momma K., Okamoto M., Mishima Y., Mori S., Hashimoto W., Murata K. 2000; A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J Bacteriol 18:3998–4004
    [Google Scholar]
  22. Ochman H., Gerber A. S., Hart D. L. 1988; Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623
    [Google Scholar]
  23. Olsvik O., Rimstad E., Hornes E., Strockbine N., Wasteson Y., Lund A., Wachsmuth K. 1991; A nested PCR followed by magnetic separation of amplified fragments for detection of Escherichia coli Shiga-like toxin genes. Mol Cell Probes 6:429–435
    [Google Scholar]
  24. Pelletier I., Altenbuchner J., Mattes R. 1995; A catalytic triad is required by the non-heme haloperoxidases to perform halogenation. Biochim Biophys Acta 1250:149–157 [CrossRef]
    [Google Scholar]
  25. Rochelle P. A., Will J. A. K., Fry J. C., Jenkins G. J. S., Parkes R. J., Tueley C. M., Weightman A. J. 1995; Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. In Nucleic Acids in the Environment pp 219–239 Edited by Trevors J. T., van Elsas J. D. New York: Springer;
    [Google Scholar]
  26. Saegusa H., Shiraki M., Saito T. 2002; Cloning of an intracellular d-(−)-3-hydroxybutyrate-oligomer hydrolase gene from Ralstonia euthopha H16 and identification of the active site serine residue by site-direct mutagenesis. J Biosci Bioeng 94:106–112 [CrossRef]
    [Google Scholar]
  27. Sakai K., Hamada N., Watanabe Y. 1985; A new enzyme, β-diketone hydrolase: a component of a poly(vinyl alcohol) degrading enzyme preparation. Agric Biol Chem 49:1901–1902 [CrossRef]
    [Google Scholar]
  28. Sakai K., Hamada N., Watanabe Y. 1986; Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-diketone hydrolase from Pseudomonas sp. Agric Biol Chem 50:989–996 [CrossRef]
    [Google Scholar]
  29. Sakazawa C., Shimao M., Taniguchi Y., Kato N. 1981; Symbiotic utilization of polyvinyl alcohol by mixed cultures. Appl Environ Microbiol 41:261–267
    [Google Scholar]
  30. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Shimao M., Yamamoto H., Ninomiya K., Kato N., Adachi O., Ameyama M., Sakazawa C. 1984; Pyrroloquinoline quinone as an essential growth factor for a poly(vinyl alcohol)-degrading symbiont, Pseudomonas sp. VM15C. Agric Biol Chem 48:2873–2876 [CrossRef]
    [Google Scholar]
  32. Shimao M., Ninomiya K., Kuno O., Kato N., Sakazawa C. 1986; Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl Environ Microbiol 51:268–275
    [Google Scholar]
  33. Shimao M., Tamogami T., Nishi K., Harayama S. 1996; Cloning and characterization of the gene encoding pyrroloquinoline quinone-dependent poly(vinyl alcohol) dehydrogenase of Pseudomonas sp. strain VM15C. Biosci Biotechnol Biochem 60:1056–1062 [CrossRef]
    [Google Scholar]
  34. Shimao M., Tamogami T., Kishida S., Harayama S. 2000; The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA. Microbiology 146:649–657
    [Google Scholar]
  35. Silverstein R. M., Basler G. C., Morrill T. C. 1991 Spectrometric Identification of Organic Compounds, 5th edn. New York: Wiley;
    [Google Scholar]
  36. Sugimoto M., Tanabe M., Hataya M., Enokibara S., Duine J. A., Kawai F. 2001; The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183:6694–6698 [CrossRef]
    [Google Scholar]
  37. Suzuki T. 1976; Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 40:497–504 [CrossRef]
    [Google Scholar]
  38. Suzuki T. 1978; Oxidation of secondary alcohol by polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 42:1187–1194 [CrossRef]
    [Google Scholar]
  39. Tabata K., Kasuya K., Abe H., Masuda K., Doi Y. 1999; Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. Appl Environ Microbiol 65:4268–4270
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Watanabe Y., Morita M., Hamada N., Tsujisaka Y. 1975; Formation of hydrogen peroxide by a polyvinyl alcohol degrading enzyme. Agric Biol Chem 39:2447–2448 [CrossRef]
    [Google Scholar]
  42. Watanabe Y., Morita M., Hamada N., Tsujisaka Y. 1976; Purification and properties of a polyvinyl alcohol-degrading enzyme produced by a strain of Pseudomonas. Arch Biochem Biophys 174:575–581 [CrossRef]
    [Google Scholar]
  43. Zhang K., Shiraki M., Saito T. 1997; Purification of an extracellular d-(−)-3-hydroxybutyrate oligomer hydrolase from Pseudomonas sp. strain A1 and cloning and sequencing of its gene. J Bacteriol 179:72–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27655-0
Loading
/content/journal/micro/10.1099/mic.0.27655-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error