1887

Abstract

Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteraemia, by many pathogenic bacteria. serovar Choleraesuis is an important enteric pathogen that causes serious systemic infections in swine and humans. Here, it was found that, when introduced into , a recombinant plasmid carrying the gene from a plasmid-based genomic library of serovar Choleraesuis conferred a high-level resistance to the bactericidal activity of pooled normal swine serum. The resistance was equal to the level conferred by , a gene encoding a 17 kDa outer-membrane protein which promotes the serum resistance phenotype in serovar Typhimurium. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of the serum resistance phenotype in . When this mutation was introduced into the chromosome of serovar Choleraesuis by homology recombination with the wild-type allele, the resulting strain could not produce PagC, and it showed a decreased level of resistance to complement-mediated killing. The mutation could be restored by introduction of the intact gene on a plasmid, but not by introduction of the point-mutated gene. In addition, PagC was able to promote serum resistance in the serovar Choleraesuis LPS mutant strain, which is highly sensitive to serum killing. Although PagC is not thought to confer serum resistance directly, these results strongly suggest that PagC is an important outer-membrane protein that plays an important role in the serum resistance of serovar Choleraesuis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27654-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510863.html?itemId=/content/journal/micro/10.1099/mic.0.27654-0&mimeType=html&fmt=ahah

References

  1. Beer K. B., Miller V. L. 1992; Amino acid substitutions in naturally occurring variants of ail result in altered invasion activity. J Bacteriol 174:1360–1369
    [Google Scholar]
  2. Blaser M. J., Feldman R. A. 1981; From the Centers for Disease Control. Salmonella bacteremia: reports to the Centers for Disease Control, 1968–1979. J Infect Dis 143:743–746 [CrossRef]
    [Google Scholar]
  3. Bliska J. B., Falkow S. 1992; Bacterial resistance to complement killing mediated by the Ail protein of Yersinia enterocolitica . Proc Natl Acad Sci U S A 89:3561–3565 [CrossRef]
    [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113 [CrossRef]
    [Google Scholar]
  5. Cirillo D. M., Heffernan E. J., Wu L., Harwood J., Fierer J., Guiney D. G. 1996; Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun 64:2019–2023
    [Google Scholar]
  6. Cohen J. I., Bartlett J. A., Corey G. R. 1987; Extra-intestinal manifestations of Salmonella infections. Medicine 66:349–388
    [Google Scholar]
  7. Crago A. M., Koronakis V. 1999; Binding of extracellular matrix laminin to Escherichia coli expressing the Salmonella outer membrane proteins Rck and PagC. FEMS Microbiol Lett 176:495–501 [CrossRef]
    [Google Scholar]
  8. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 52:147–154 [CrossRef]
    [Google Scholar]
  9. Gotoh H., Okada N., Kim Y. G., Shiraishi K., Hirami N., Haneda T., Kurita A., Kikuchi Y., Danbara H. 2003; Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella. Microb Pathog 34:227–238 [CrossRef]
    [Google Scholar]
  10. Grossman N., Svenson S. B., Leive L., Lindberg A. A. 1990; Salmonella O antigen-specific oligosaccharide–octyl conjugates activate complement via the alternative pathway at different rates depending on the structure of the O antigen. Mol Immunol 27:859–865 [CrossRef]
    [Google Scholar]
  11. Haneda T., Okada N., Nakazawa N., Kawakami T., Danbara H. 2001; Complete DNA sequence and comparative analysis of the 50-kb virulence plasmid of Salmonella enterica serovar Choleraesuis. . Infect Immun 69:2612–2620 [CrossRef]
    [Google Scholar]
  12. Heffernan E. J., Harwood J., Fierer J., Guiney D. 1992a; The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, includingpagC and ail . J Bacteriol 174:84–91
    [Google Scholar]
  13. Heffernan E. J., Reed S., Hackett J., Fierer J., Roudier C., Guiney D. 1992b; Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck . J Clin Invest 90:953–964 [CrossRef]
    [Google Scholar]
  14. Heffernan E. J., Wu L., Louie J., Okamoto S., Fierer J., Guiney D. G. 1994; Specificity of the complement resistance and cell association phenotypes encoded by the outer membrane protein genes rck from Salmonella typhimurium and ail from Yersinia enterocolitica . Infect Immun 62:5183–5186
    [Google Scholar]
  15. Hoiseth S. K., Stocker B. A. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239 [CrossRef]
    [Google Scholar]
  16. Joiner K. A. 1988; Complement evasion by bacteria and parasites. Annu Rev Microbiol 42:201–230 [CrossRef]
    [Google Scholar]
  17. Joiner K. A., Grossman N., Schmetz M., Leive L. 1986; C3 binds preferentially to long-chain lipopolysaccharide during alternative pathway activation by Salmonella montevideo . J Immunol 136:710–715
    [Google Scholar]
  18. Kawahara K., Haraguchi Y., Tsuchimoto M., Terakado N., Danbara H. 1988; Evidence of correlation between 50-kilobase plasmid of Salmonella choleraesuis and its virulence. Microb Pathog 4:155–163 [CrossRef]
    [Google Scholar]
  19. McClelland M., Sanderson K. E., Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  20. Menard R., Sansonetti P. J., Parsot C. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906
    [Google Scholar]
  21. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. 1996; Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [CrossRef]
    [Google Scholar]
  22. Miki T., Okada N., Danbara H. 2004; Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279:34631–34642 [CrossRef]
    [Google Scholar]
  23. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  24. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058 [CrossRef]
    [Google Scholar]
  25. Miller V. L., Beer K. B., Loomis W. P., Olson J. A., Miller S. I. 1992; An unusual pagC : : TnphoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect Immun 60:3763–3770
    [Google Scholar]
  26. Miller V. L., Beer K. B., Heusipp G., Young B. M., Wachtel M. R. 2001; Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol 41:1053–1062
    [Google Scholar]
  27. Murray G. L., Attridge S. R., Morona R. 2003; Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406 [CrossRef]
    [Google Scholar]
  28. Parkhill J., Dougan G., James K. D. & 27 other authors; 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852 [CrossRef]
    [Google Scholar]
  29. Perez-Casal J., Caparon M. G., Scott J. R. 1991; Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173:2617–2624
    [Google Scholar]
  30. Pierson D. E., Falkow S. 1993; The ail gene of Yersinia enterocolitica has a role in the ability of the organism to survive serum killing. Infect Immun 61:1846–1852
    [Google Scholar]
  31. Pramoonjago P., Kaneko M., Kinoshita T., Ohtsubo E., Takeda J., Hong K. S., Inagi R., Inoue K. 1992; Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. J Immunol 148:827–836
    [Google Scholar]
  32. Rautemaa R., Meri S. 1999; Complement-resistance mechanisms of bacteria. Microbes Infect 1:785–794 [CrossRef]
    [Google Scholar]
  33. Rhen M., Sukupolvi S. 1988; The role of the traT gene of the Salmonella typhimurium virulence plasmid for serum resistance and growth within liver macrophages. Microb Pathog 5:275–285 [CrossRef]
    [Google Scholar]
  34. Taylor P. W. 1983; Bactericidal and bacteriolytic activity of serum against Gram-negative bacteria. Microbiol Rev 47:46–83
    [Google Scholar]
  35. Tomas J. M., Ciurana B., Benedi V. J., Juarez A. 1988; Role of lipopolysaccharide and complement in susceptibility of Escherichia coli and Salmonella typhimurium to non-immune serum. J Gen Microbiol 134:1009–1016
    [Google Scholar]
  36. Tomlinson S., Taylor P. W., Morgan B. P., Luzio J. P. 1989; Killing of gram-negative bacteria by complement. Fractionation of cell membranes after complement C5b-9 deposition on to the surface of Salmonella minnesota Re595. Biochem J 263:505–511
    [Google Scholar]
  37. Vandenbosch J. L., Rabert D. K., Kurlandsky D. R., Jones G. W. 1989; Sequence analysis of rsk, a portion of the 95-kilobase plasmid of Salmonella typhimurium associated with resistance to the bactericidal activity of serum. Infect Immun 57:850–857
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27654-0
Loading
/content/journal/micro/10.1099/mic.0.27654-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error