The expression profile K-12 in response to minimal, optimal and excess copper concentrations Free

Abstract

The gene expression profile of K-12 MG1655 grown in minimal medium supplemented with elevated copper concentrations (as copper-glycine) has been analysed using whole-genome oligonucleotide microarrays. At 750 μM copper-glycine, the expression of both the and copper-export systems is evident. At near-lethal copper concentrations (2 mM copper-glycine), the expression of these two regulons increases significantly. Other regulons with increased transcription in response to elevated concentrations of copper-glycine include those for the superoxide stress response, iron homeostasis, and envelope stress. Furthermore, a variety of ORFs with decreased expression in response to increased copper-glycine has been identified, including the zinc ABC transporter and genes involved in the chemotactic response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27650-0
2005-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511187.html?itemId=/content/journal/micro/10.1099/mic.0.27650-0&mimeType=html&fmt=ahah

References

  1. Barth M., Marschall C., Muffler A., Fischer D., Hengge-Aronis R. 1995; Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σs and many σs-dependent genes in Escherichia coli. J Bacteriol 177:3455–3464
    [Google Scholar]
  2. Benjamini Y., Hochberg Y. 1995; Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    [Google Scholar]
  3. Bertin P., Terao E., Lee E. H., Lejeune P., Colson C., Danchin A., Collatz E. 1994; The H-NS protein is involved in the biogenesis of flagella in Escherichia coli . J Bacteriol 176:5537–5540
    [Google Scholar]
  4. Blattner F. R., Plunkett G., Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1469 [CrossRef]
    [Google Scholar]
  5. Brickman T. J., Ozenberger B. A., McIntosh M. A. 1990; Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol 212:669–682 [CrossRef]
    [Google Scholar]
  6. Brown N. L., Lee B. T. O., Silver S. 1994; Bacterial transport of and resistance to copper. In Metal Ions in Biological Systems pp 405–434 Edited by Sigel H., Sigel A. New York: Marcel Dekker;
    [Google Scholar]
  7. Browning D. F., Cole J. A., Busby S. J. W. 2000; Supression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol Microbiol 37:1258–1269 [CrossRef]
    [Google Scholar]
  8. Cotter C., Trevors J. T. 1988; Copper adsorption by Escherichia coli. Syst Appl Microbiol 10:313–317 [CrossRef]
    [Google Scholar]
  9. Danese P. N., Silhavy T. J. 1998; CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 180:831–839
    [Google Scholar]
  10. Danese P. N., Snyder W. B., Cosma C. L., Davis L. J., Silhavy T. J. 1995; The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease. Genes Dev 9:387–398 [CrossRef]
    [Google Scholar]
  11. Dartigalongue C., Raina S. 1998; A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17:3968–3980 [CrossRef]
    [Google Scholar]
  12. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  13. De Wulf P., Kwon O., Lin E. C. C. 1999; The CpxRA signal transduction system of Escherichia coli: growth related autoactivation and control of unanticipated target operons. J Bacteriol 181:6772–6778
    [Google Scholar]
  14. De Wulf P., McGuire A. M., Liu X., Lin E. C. C. 2002; Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652–26661 [CrossRef]
    [Google Scholar]
  15. Dorel C., Vidal O., Prigent-Combaret C., Vallet I., Lejeune P. 1999; Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175 [CrossRef]
    [Google Scholar]
  16. Fawcett W. P., Wolf R. E., Jr. 1995; Genetic definition of the Escherichia coli zwf “Soxbox”, the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide. J Bacteriol 177:1742–1750
    [Google Scholar]
  17. Franke S., Grass G., Rensing C., Nies D. H. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812 [CrossRef]
    [Google Scholar]
  18. Free A., Dorman C. J. 1997; The Escherichia coli stpA gene is transiently expressed during growth in rich medium and is induced in minimal medium and by stress conditions. J Bacteriol 179:909–918
    [Google Scholar]
  19. Govantes F., Orjalo A. V., Gunsalus R. P. 2000; Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome doxidase (cydAB) operon. Mol Microbiol 38:1061–1073
    [Google Scholar]
  20. Grass G., Thakali K., Klebba P. E., Thieme D., Muller A., Wildner G. F., Rensing C. 2004; Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833 [CrossRef]
    [Google Scholar]
  21. Gross C., Kelleher M., Iyer V. R., Brown P. O., Winge D. R. 2000; Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310–32316 [CrossRef]
    [Google Scholar]
  22. Harrison M. D., Jones C. E., Solioz M., Dameron C. T. 2000; Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32 [CrossRef]
    [Google Scholar]
  23. Heid C. A., Stevens J., Livak K. J., Williams P. M. 1996; Real time quantitative PCR. Genome Research 6:986–994 [CrossRef]
    [Google Scholar]
  24. Kimura T., Nishioka H. 1997; Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res 389:237–242 [CrossRef]
    [Google Scholar]
  25. Liu X., Matsumura P. 1994; The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351
    [Google Scholar]
  26. Lucht J. M., Dersch P., Kempf B., Bremer E. 1994; Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 269:6578–6586
    [Google Scholar]
  27. McHugh J. P., Rodriguez-Quinones F., Abdul-Tehrani H., Svistunenko D. A., Poole R. K., Cooper C. E., Andrews S. C. 2003; Global iron-dependent gene regulation in Escherichia coli – a new mechanism for iron homeostasis. J Biol Chem 278:29478–29486 [CrossRef]
    [Google Scholar]
  28. Munson G. P., Lam D. L., Outten F. W., O'Halloran T. V. 2000; Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871 [CrossRef]
    [Google Scholar]
  29. Nachin L., Loiseau L., Expert D., Barras F. 2003; SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J 22:427–437 [CrossRef]
    [Google Scholar]
  30. Olsen P. B., Klemm P. 1994; Localization of promoters in the fim gene cluster and the efffect of H-NS on the transcription offimB and fimE. FEMS Microbiol Lett 116:95–100 [CrossRef]
    [Google Scholar]
  31. Outten F. W., Outten C. E., Hale J., O'Halloran T. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029 [CrossRef]
    [Google Scholar]
  32. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth inEscherichia coli. J Biol Chem 276:30670–30677 [CrossRef]
    [Google Scholar]
  33. Patzer S. I., Hantke K. 1998; The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210 [CrossRef]
    [Google Scholar]
  34. Patzer S. I., Hantke K. 2000; The Zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system inEscherichia coli. J Biol Chem 275:24321–24332 [CrossRef]
    [Google Scholar]
  35. Peterson C., Moller L. B. 2000; Control of copper homeostsis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261:289–298 [CrossRef]
    [Google Scholar]
  36. Pirt S. J. 1967; A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47:181–197 [CrossRef]
    [Google Scholar]
  37. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 1999; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656
    [Google Scholar]
  38. Roberts S. A., Weichsel A., Grass G., Thakali K., Hazzard J. T., Tollin G., Rensing C., Montfort W. R. 2002; Crystal structure and electron transfer kenetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci U S A 99:2766–2771 [CrossRef]
    [Google Scholar]
  39. Roesch P. L., Blomfield I. C. 1998; Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli. Mol Microbiol 27:751–761 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schembri M. A., Olsen P. B., Klemm P. 1998; Orientation-dependent enhancement by H-NS of the activity of the type 1 fimbrial phase switch promoter in Escherichia coli. Mol Gen Genet 259:336–344 [CrossRef]
    [Google Scholar]
  42. Schroder O., Wagner R. 2002; The bacterial regulatory protein H-NS – a versatile modulator of nucleic acid structures. Biol Chem 383:945–960
    [Google Scholar]
  43. Shimohata N., Chiba S., Saikawa N., Ito K., Akiyama Y. 2002; The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7:653–662 [CrossRef]
    [Google Scholar]
  44. Shin S., Park C. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702
    [Google Scholar]
  45. Singh S. K., Grass G., Rensing C., Montfort W. R. 2004; Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817 [CrossRef]
    [Google Scholar]
  46. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511 [CrossRef]
    [Google Scholar]
  47. Tramonti A., Visca P., De Canio M., Falconi M., De Biase D. 2002; Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613 [CrossRef]
    [Google Scholar]
  48. Wu J., Weiss B. 1992; Two-stage induction of the soxRS(superoxide response) regulon of Escherichia coli. J Bacteriol 174:3915–3920
    [Google Scholar]
  49. Zhang L., Chaudhuri R. R., Constantinidou C. 12 other authors 2004; Regulators encoded in the ETT2 gene cluster influence expression of genes within the locus of enterocyte effacement in enterohemorrhagic O157 : H7. Infect Immun 72:7282–7293 [CrossRef]
    [Google Scholar]
  50. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643
    [Google Scholar]
  51. Zheng D., Constantinidou C., Hobman J. L., Minchin S. D. 2004; Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27650-0
Loading
/content/journal/micro/10.1099/mic.0.27650-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed