1887

Abstract

The serotype F phage 42 of is a triple-converting bacteriophage that encodes the staphylokinase gene () and the enterotoxin A gene (). Lysogeny results in loss of expression of the chromosomal -haemolysin gene () (negative conversion), the expression of staphylokinase and enterotoxin A (positive conversion), and the acquisition of resistance to lysis by all 23 phages of the International Basic Set (IBS) of typing phages. Until this study, the basis of 42 resistance to lysis by exogenous phages was unknown. The authors report here that phage 42 encodes a restriction–modification (R–M) system, termed 42I, adjacent to and in the same orientation to the phage integrase gene . The genes encoding 42I were cloned and sequenced, and found to consist of two overlapping reading frames, ORF S (specificity) and ORF RM (restriction–modification), in the same orientation. The ORFs share a high degree of DNA and amino acid sequence homology with the previously characterized I R–M system of . Expression of the cloned 42I ORF S and ORF RM in 80CR3 transformants from a plasmid vector conferred resistance to lysis by all 23 IBS phages. Similarly, transformants of RN4220 harbouring recombinant plasmids containing both ORFs were resistant to lysis by the IBS typing phages. However, transformants harbouring plasmids encoding either ORF S or ORF RM were susceptible to lysis by the IBS phages, and they had the same phage-susceptibility pattern as the respective parental isolates. analysis of crude and partially purified extracts of transformants harbouring both the 42 ORF S and ORF RM genes indicated that 42I has endonuclease activity and requires co-factors Mg and -adenosylmethionine in order to function, and activity is optimized at pH 8, although the precise recognition sequence has yet to be determined. The findings of this study confirm that 42 is a quadruple-converting phage, believed to be the first described for , and show that it encodes a novel R–M system termed 42I.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27646-0
2005-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511301.html?itemId=/content/journal/micro/10.1099/mic.0.27646-0&mimeType=html&fmt=ahah

References

  1. Altschul S., Gish W., Miller W., Meyers E., Lipman D. 1990; Basic local alignment search tool. J Mol Biol 205:403–410
    [Google Scholar]
  2. Andrasevic A. T., Power E. G., Anthony R. M., Kalenic S., French G. L. 1995; Failure of bacteriophage typing to detect an inter-hospital outbreak of methicillin-resistant Staphylococcus aureus (MRSA) in Zagreb subsequently identified by random amplification of polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE). Clin Microbiol Infect 5:634–642
    [Google Scholar]
  3. Blair J. E., Williams R. E. 1961; Phage typing of staphylococci. Bull World Health Organ 24:771–784
    [Google Scholar]
  4. Borchardt S. A., Babwah A. V., Jayaswal R. K. 1993; Sequence analysis of the region downstream from a peptidoglycan hydrolase-encoding gene from Staphylococcus aureus NCTC 8325. Gene 137:253–258 [CrossRef]
    [Google Scholar]
  5. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL-1 Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:557–580
    [Google Scholar]
  6. Carroll J. D., Cafferkey M. T., Coleman D. C. 1993; Serotype F double- and triple-converting phage insertionally inactivate the Staphylococcus aureus beta-toxin determinant by a common molecular mechanism. FEMS Microbiol Lett 106:147–155
    [Google Scholar]
  7. Carroll D., Kehoe M. A., Cavanagh D., Coleman D. C. 1995; Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages π13 and π42. Mol Microbiol 16:877–893 [CrossRef]
    [Google Scholar]
  8. Cheng X. 1995; Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–308 [CrossRef]
    [Google Scholar]
  9. Coleman D. C., Arbuthnott J. P., Pomeroy H. M., Birkbeck T. H. 1986; Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb Pathog 1:549–564 [CrossRef]
    [Google Scholar]
  10. Coleman D. C., Sullivan D. J., Russell R. J., Arbuthnott J. P., Carey B. F., Pomeroy H. M. 1989; Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J Gen Microbiol 135:1679–1697
    [Google Scholar]
  11. Coleman D., Knights J., Russell R., Shanley D., Birkbeck T. H., Dougan G., Charles I. 1991; Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage π13 occurs by site- and orientation-specific integration of the π13 genome. Mol Microbiol 5:933–939 [CrossRef]
    [Google Scholar]
  12. Degtyarev S. K., Rechkunova N. I., Zernov Y. P., Dedkov V. S., Chizikov V. E., Van Calligan M., Williams R., Murray E. 1993; Bsp24I, a new unusual restriction endonuclease. Gene 131:93–95 [CrossRef]
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  14. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244 [CrossRef]
    [Google Scholar]
  15. Klimasauskas S., Timinskas A., Menkevicius S., Butkiene D., Butkus V., Janulaitis A. 1989; Sequence motifs characteristic of DNA [cytosine-N4] methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res 17:9823–9832 [CrossRef]
    [Google Scholar]
  16. Kong H. 1998; Analyzing the functional organization of a novel restriction modification system, the BcgI system. J Mol Biol 279:823–832 [CrossRef]
    [Google Scholar]
  17. Kong H., Smith C. L. 1997; Substrate DNA and cofactor regulate the activities of a multi-functional restriction–modification enzyme, BcgI. Nucleic Acids Res 25:3687–3692 [CrossRef]
    [Google Scholar]
  18. Kong H., Morgan R. D., Maunus R. E., Schildkraut I. 1993; A unique restriction endonuclease, BcgI, from Bacillus coagulans. Nucleic Acids Res 21:987–991 [CrossRef]
    [Google Scholar]
  19. Kong H., Roemer S. E., Waite-Rees P. A., Benner J. S., Wilson G. G., Nwankwo D. O. 1994; Characterization of BcgI, a new kind of restriction–modification system. J Biol Chem 269:683–690
    [Google Scholar]
  20. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712 [CrossRef]
    [Google Scholar]
  21. Lee C. Y., Buranen S. L. 1989; Extent of the DNA sequence required in integration of staphylococcal bacteriophage L54a. J Bacteriol 171:1652–1657
    [Google Scholar]
  22. Lee C. Y., Iandolo J. J. 1986a; Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc Natl Acad Sci U S A 83:5474–5478 [CrossRef]
    [Google Scholar]
  23. Lee C. Y., Iandolo J. J. 1986b; Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J Bacteriol 166:385–391
    [Google Scholar]
  24. Lee C. Y., Iandolo J. J. 1988; Structural analysis of staphylococcal bacteriophage π11 attachment sites. J Bacteriol 170:2409–2411
    [Google Scholar]
  25. Malone T., Blumenthal R. M., Cheng X. 1995; Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyl-transferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632 [CrossRef]
    [Google Scholar]
  26. Novick R. P. 1990; The staphylococcus as a molecular and genetic system. In Molecular Biology of the Staphylococci pp 1–40 Edited by Novick R. P. New York: VCH Publishers;
    [Google Scholar]
  27. Parker M. T. 1983; The significance of phage-typing patterns in Staphylococcus aureus. In Staphylococci and Staphylococcal Infections vol. 1 pp 33–62 Edited by Easmon C. S. F., Adlam C. London: Academic Press;
    [Google Scholar]
  28. Roberts R. J., Belfort M., Bestor T. 44 other authors 2003; A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812 [CrossRef]
    [Google Scholar]
  29. Rossney A. S., McDonald P., Humphreys H., Glynn G. M., Keane C. T. 2003; Antimicrobial resistance and epidemiological typing of methicillin-resistant Staphylococcus aureus in Ireland (North and South). Eur J Clin Microbiol Infect Dis 6:379–381
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sears L. E., Zhou B., Aliotta J. M., Morgan R. D., Kong H. 1996; BaeI, another unusual BcgI-like restriction endonuclease. Nucleic Acids Res 24:3590–3592 [CrossRef]
    [Google Scholar]
  32. Stobberingh E. E., Winkler K. C. 1977; Restriction-deficient mutants of Staphylococcus aureus. J Gen Microbiol 99:359–367 [CrossRef]
    [Google Scholar]
  33. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  34. Timinskas A., Butkus V., Janulaitis A. 1995; Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 157:3–11 [CrossRef]
    [Google Scholar]
  35. Vitkute J., Maneliene Z., Petrusyte M., Janulaitis A. 1997; BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence. Nucleic Acids Res 25:4444–4446 [CrossRef]
    [Google Scholar]
  36. Vitor J. M., Morgan R. D. 1995; Two novel restriction endonucleases from Campylobacter jejuni. Gene 157:109–110 [CrossRef]
    [Google Scholar]
  37. Wilson G. G., Murray N. E. 1991; Restriction and modification systems. Annu Rev Genet 25:585–627 [CrossRef]
    [Google Scholar]
  38. Wilson C. R., Skinner S. E., Shaw W. V. 1981; Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: insertional inactivation of Cm resistance, mapping of restriction sites and construction of cloning vehicles. Plasmid 5:245–258 [CrossRef]
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  40. Yuan R. 1981; Structure and mechanism of multifunctional restriction endonucleases. Annu Rev Biochem 50:285–319 [CrossRef]
    [Google Scholar]
  41. Zhang B., Tao T., Wilson G. G., Blumenthal R. M. 1993; The M.AluI DNA-(cytosine C5)-methyltransferase has an unusually large, partially dispensable, variable region. Nucleic Acids Res 21:905–911 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27646-0
Loading
/content/journal/micro/10.1099/mic.0.27646-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error