The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in via 4-quinolone-dependent cell-to-cell communication Free

Abstract

In the production of multiple virulence factors depends on cell-to-cell communication through the integration of -acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce -(3-oxododecanoyl)--homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in -butanoyl--homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance. Provision of exogenous PQS improved growth and restored AHL and virulence factor production as well as antibiotic susceptibility, indicating that the pump mutants retained their capacity to respond to PQS. RT-PCR analysis indicated that expression of the PQS biosynthetic genes, and , was inhibited when the mutants reached stationary phase, suggesting that the pleiotropic phenotype observed may be due to intracellular accumulation of a toxic PQS precursor. To explore this hypothesis, double (unable to produce anthranilate, the precursor of PQS) and mutants were constructed; the improved growth of the former suggested that the toxic compound is likely to be anthranilate or a metabolite of it. Mutations in and also resulted in the attenuation of virulence in rat and plant infection models. In plants, addition of PQS restored the virulence of and mutants. Collectively, these results demonstrate an essential function for the MexGHI-OpmD pump in facilitating cell-to-cell communication, antibiotic susceptibility and promoting virulence and growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27631-0
2005-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511113.html?itemId=/content/journal/micro/10.1099/mic.0.27631-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Ghysels B., Cornelis P., Baysse C. 2002; Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 14:2371–2381
    [Google Scholar]
  2. Anjaiah V., Koedam N., Nowak-Thompson B., Loper J. E., Tabi Tambong J., Cornelis P, Höfte M. 1998; Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5-derivatives towards Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854 [CrossRef]
    [Google Scholar]
  3. Bassler B. L. 2002; Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424 [CrossRef]
    [Google Scholar]
  4. Calfee M. W., Coleman J. P., Pesci E. C. 2001; Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression byPseudomonas aeruginosa. Proc Natl Acad Sci U S A 98:11633–11637 [CrossRef]
    [Google Scholar]
  5. Cámara M., Williams P., Hardman A. 2002; Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2:667–676 [CrossRef]
    [Google Scholar]
  6. Cao H., Baldini R. L., Rahme L. G. 2001a; Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284 [CrossRef]
    [Google Scholar]
  7. Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., Rahme L. G. 2001b; A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618 [CrossRef]
    [Google Scholar]
  8. Chapon-Hervé V., Akrim M., Latifi A., Williams P., Lazdunski A., Bally M. 1997; Regulation of the xcp secretion pathway by multiple quorum-sensing modulons inPseudomonas aeruginosa. Mol Microbiol 24:1169–1178 [CrossRef]
    [Google Scholar]
  9. Chhabra S. R., Stead P., Bainton N. J., Salmond G. P. C., Stewart G. S. A. B., Williams P., Bycroft B. W. 1993; Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-l-homoserine lactone. J Antibiotics 46:441–449 [CrossRef]
    [Google Scholar]
  10. Chhabra S. R., Harty C., Hooi D. S. W., Daykin M., Williams P., Telford G., Pritchard D. I., Bycroft B. W. 2003; Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46:97–104 [CrossRef]
    [Google Scholar]
  11. Collier D. N., Anderson L., McKnight S. L., Noah T. L., Knowles M., Boucher R., Schwab U., Gilligan P., Pesci E. C. 2002; A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46 [CrossRef]
    [Google Scholar]
  12. Cornelis P., Aendekerk S. 2004; A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150:752–756 [CrossRef]
    [Google Scholar]
  13. Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., van Delden C., Kocjancic Curty L., Köhler T. 2002; Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoidum host system. J Bacteriol 184:3027–3033 [CrossRef]
    [Google Scholar]
  14. D'Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C. 2002; Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481–6489 [CrossRef]
    [Google Scholar]
  15. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  16. Déziel E., Lépine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344 [CrossRef]
    [Google Scholar]
  17. Diggle S. P., Winzer K., Lazdunski A., Williams P., Cámara M. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586 [CrossRef]
    [Google Scholar]
  18. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Williams P, Cámara M. 2003; The Pseudomonas aeruginosa quinolone signal molecule moderates the production of rhl-dependent quorum sensing phenotypes and promotes biofilm development. Mol Microbiol 50:29–43 [CrossRef]
    [Google Scholar]
  19. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  20. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214 [CrossRef]
    [Google Scholar]
  21. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480 [CrossRef]
    [Google Scholar]
  22. Guina T., Purvine S. O., Yi E. C., Eng J., Goodlett D. R., Aebersold R., Miller S. I. 2003; Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci U S A 100:2771–2776 [CrossRef]
    [Google Scholar]
  23. Hancock R. E., Brinkman F. S. 2002; Functions of Pseudomonas porins in uptake and efflux. Annu Rev Microbiol 56:17–38 [CrossRef]
    [Google Scholar]
  24. Hentzer M., Wu H., Andersen J. B. 15 other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815 [CrossRef]
    [Google Scholar]
  25. Hirakata Y., Srikumar R., Poole K., Gotoh N., Suematsu T., Kohno S., Kamihira S., Hancock R. E., Speert D. P. 2002; Multi efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109–118 [CrossRef]
    [Google Scholar]
  26. Jo J. T., Brinkman F. S., Hancock R. E. 2003; Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 47:1101–1111 [CrossRef]
    [Google Scholar]
  27. Juhas M., Wiehlmann L., Huber B. 8 other authors 2004; Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150:831–841 [CrossRef]
    [Google Scholar]
  28. Köhler T., Epp S. F., Curty L. K., Pechere J. C. 1999; Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa . J Bacteriol 181:6300–6305
    [Google Scholar]
  29. Köhler T., van Delden C., Curty L. K., Hamzehpour M. M., Pechere J. C. 2001; Overexpression of the MexEF-OprN multidrug efflux system affects cell-to cell signalling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222 [CrossRef]
    [Google Scholar]
  30. Kurnasov O., Jablonski L., Polanuyer B., Dorrestein P., Begley T., Osterman A. 2003; Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227:219–227 [CrossRef]
    [Google Scholar]
  31. Latifi A., Winson M. K., Bycroft B. W., Stewart G. S. A. B., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–344 [CrossRef]
    [Google Scholar]
  32. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  33. Lépine F., Déziel E., Milot S., Rahme L. G. 2003; A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochem Biophys Acta 1622:36–41 [CrossRef]
    [Google Scholar]
  34. Lim A. Jr, De Vos D., Brauns M., Mossialos D., Gaballa A., Qing D., Cornelis P. 1997; Molecular and immunological characterization of OprL, the 18 kDa outer-membrane peptidoglycan-associated lipoprotein (PAL) of Pseudomonas aeruginosa. Microbiology 143:1709–1716 [CrossRef]
    [Google Scholar]
  35. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222 [CrossRef]
    [Google Scholar]
  36. Maseda H., Sawada I., Saito K., Uchiyama H., Nakae T., Nomura N. 2004; Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT,of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1320–1328 [CrossRef]
    [Google Scholar]
  37. Matthijs S., Baysse C., Koedam N. 8 other authors 2004; The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate from the kynurenine pathway. Mol Microbiol 52:371–384 [CrossRef]
    [Google Scholar]
  38. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [CrossRef]
    [Google Scholar]
  39. McClean K. H., Winson M. K., Fish L. 9 other authors 1997; Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [CrossRef]
    [Google Scholar]
  40. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  41. Milton D. L, Wolf-Watz H, O'Toole R., Hörstedt P. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319
    [Google Scholar]
  42. Murata T., Gotoh N., Nishino T. 2002; Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett 19:57–63
    [Google Scholar]
  43. Pearson J. P., Van Delden C., Iglewski B. H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210
    [Google Scholar]
  44. Pesci E. C., Milbank J. B. J., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234 [CrossRef]
    [Google Scholar]
  45. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T. G., Haas D., Williams P, Cámara M. 2001; The global post-transcriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183:6676–6683 [CrossRef]
    [Google Scholar]
  46. Poole K. 2002; Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol 3:77–98 [CrossRef]
    [Google Scholar]
  47. Rahme L. G., Tan M. W., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M. 1995; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250
    [Google Scholar]
  48. Ramsey M. M., Whiteley M. 2004; Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol Microbiol 53:1075–1087 [CrossRef]
    [Google Scholar]
  49. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [CrossRef]
    [Google Scholar]
  50. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985 [CrossRef]
    [Google Scholar]
  51. Schweigert N., Zehnder A. J. B., Eggen R. I. L. 2001; Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–89 [CrossRef]
    [Google Scholar]
  52. Sekiya H., Mima T., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2003; Functional cloning and characterization of a multidrug efflux pump, MexHI-OpmD, from a Pseudomonas aeruginosa mutant. Antimicrob Agents Chemother 47:2990–2992 [CrossRef]
    [Google Scholar]
  53. Smith R. S., Iglewski B. H. 2003; Pseudomonas aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60 [CrossRef]
    [Google Scholar]
  54. Song Z., Kharazmi A., Wu H., Faber V., Moser C., Johansen H. K., Rygaard J., Høiby N. 1998; Effects of ginseng treatment on neutrophil chemiluminescence and immunoglobulin G subclasses in a rat model of chronic Pseudomonas aeruginosa pneumonia. Clin Diag Lab Immunol 5:882–887
    [Google Scholar]
  55. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  56. Swift S., Karlyshev A. V., Fish L., Durant E. L., Winson M. K., Chhabra S. R., Williams P., Macintyre S., Stewart G. S. 1997; Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281
    [Google Scholar]
  57. Swift S., Downie J. A., Whitehead N. A., Barnard A. M., Salmond G. P., Williams P. 2001; Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45:199–270
    [Google Scholar]
  58. Tan M. W., Mahajan-Miklos S., Ausubel F. M. 1999; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720 [CrossRef]
    [Google Scholar]
  59. Van Dyk T. K., Templeton L. J., Cantera K. A., Sharpe P. L., Sariaslani F. S. 2004; Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?. J Bacteriol 186:7196–7204 [CrossRef]
    [Google Scholar]
  60. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [CrossRef]
    [Google Scholar]
  61. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909 [CrossRef]
    [Google Scholar]
  62. Winson M. K., Latifi A. 10 other authors Cámara M. 1995; Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in. Pseudomonas aeruginosa Proc Natl Acad Sci U S A 92:9427–9431 [CrossRef]
    [Google Scholar]
  63. Winson M. K., Swift S., Fish L., Throup J. P., Jorgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. 1998; Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acylhomoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192 [CrossRef]
    [Google Scholar]
  64. Winzer K., Williams P. 2001; Quorum sensing and the regulation of gene expression in pathogenic bacteria. Int J Med Microbiol 291:131–143 [CrossRef]
    [Google Scholar]
  65. Winzer K., Falconer C., Garber N. C., Diggle S. P., Williams P, Cámara M. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411 [CrossRef]
    [Google Scholar]
  66. Withers H., Swift S., Williams P. 2001; Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4:186–193 [CrossRef]
    [Google Scholar]
  67. Yates E. A., Philipp B., Buckley C. 8 other authors 2002; N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth ofYersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27631-0
Loading
/content/journal/micro/10.1099/mic.0.27631-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed