1887

Abstract

The gene of encodes and clamp loader subunits of the replisome. Cells carrying the temperature-sensitive mutation were induced for the SOS response at non-permissive temperature. The SOS induction most likely resulted from extensive replication fork collapse that exceeded the cells' capacity for restart. Seven mutations in the gene that partly suppressed the temperature sensitivity were isolated and characterized. Each of the mutations caused a single amino acid change in domains III and IV of the DnaA protein, where nucleotide binding and DNA binding, respectively, reside. The diversity of (Sx) mutants obtained indicated that a direct interaction between the DnaA protein and or is unlikely and that the mechanism behind suppression is related to DnaA function. All (Sx) mutant cells were compromised for initiation of DNA replication, and contained fewer active replication forks than their wild-type counterparts. Conceivably, this led to a reduced number of replication fork collapses within each (Sx) cell and prevented the SOS response. Lowered availability of wild-type DnaA protein also led to partial suppression of the mutation, confirming that the (Sx) mode of suppression is indirect and results from a reduced initiation frequency at .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27630-0
2005-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510963.html?itemId=/content/journal/micro/10.1099/mic.0.27630-0&mimeType=html&fmt=ahah

References

  1. Atlung, T. & Hansen, F. G. ( 1999; ). Low-temperature-induced DnaA protein synthesis does not change initiation mass in Escherichia coli K-12. J Bacteriol 181, 5557–5562.
    [Google Scholar]
  2. Atlung, T. & Hansen, F. G. ( 2002; ). Effect of different concentrations of H-NS protein on chromosome replication and the cell cycle in Escherichia coli. J Bacteriol 184, 1843–1850.[CrossRef]
    [Google Scholar]
  3. Berenstein, D., Olesen, K., Speck, C. & Skovgaard, O. ( 2002; ). Genetic organization of the Vibrio harveyi dnaA gene region and analysis of the function of the V. harveyi DnaA protein in Escherichia coli. J Bacteriol 184, 2533–2538.[CrossRef]
    [Google Scholar]
  4. Bipatnath, M., Dennis, P. P. & Bremer, H. ( 1998; ). Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J Bacteriol 180, 265–273.
    [Google Scholar]
  5. Blaesing, F., Weigel, C., Welzeck, M. & Messer, W. ( 2000; ). Analysis of the DNA-binding domain of Escherichia coli DnaA protein. Mol Microbiol 36, 557–569.
    [Google Scholar]
  6. Blinkova, A. & Walker, J. R. ( 1990; ). Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase-III γ subunit from within the τ-subunit reading frame. Nucleic Acids Res 18, 1725–1729.[CrossRef]
    [Google Scholar]
  7. Blinkova, A., Hervas, C., Stukenberg, P. T., Onrust, R., O'Donnell, M. E. & Walker, J. R. ( 1993; ). The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, τ and γ, but only τ is essential. J Bacteriol 175, 6018–6027.
    [Google Scholar]
  8. Blinkova, A., Hermandson, M. J. & Walker, J. R. ( 2003; ). Suppression of temperature-sensitive chromosome replication of an Escherichia coli dnaX(Ts) mutant by reduction of initiation efficiency. J Bacteriol 185, 3583–3595.[CrossRef]
    [Google Scholar]
  9. Boye, E., Stokke, T., Kleckner, N. & Skarstad, K. ( 1996; ). Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci U S A 93, 12206–12211.[CrossRef]
    [Google Scholar]
  10. Braun, R. E., O'Day, K. & Wright, A. ( 1985; ). Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40, 159–169.[CrossRef]
    [Google Scholar]
  11. Bremer, H. & Churchward, G. ( 1977; ). An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions. J Theor Biol 69, 645–654.[CrossRef]
    [Google Scholar]
  12. Bremer, H., Churchward, G. & Young, R. ( 1979; ). Relation between growth and replication in bacteria. J Theor Biol 81, 533–545.[CrossRef]
    [Google Scholar]
  13. Campbell, J. L. & Kleckner, N. ( 1990; ). E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967–979.[CrossRef]
    [Google Scholar]
  14. Chu, H., Malone, M. M., Haldenwang, W. G. & Walker, J. R. ( 1977; ). Physiological effects of growth of an Escherichia coli temperature-sensitive dnaZ mutant at nonpermissive temperatures. J Bacteriol 132, 151–158.
    [Google Scholar]
  15. Donachie, W. ( 1968; ). Relationship between cell size and time of initiation of DNA replication. Nature 219, 1077–1079.[CrossRef]
    [Google Scholar]
  16. Erzberger, J. P., Pirruccello, M. M. & Berger, J. M. ( 2002; ). The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 21, 4763–4773.[CrossRef]
    [Google Scholar]
  17. Filip, C. C., Allen, J. S., Gustafson, R. A., Allen, R. C. & Walker, J. R. ( 1974; ). Bacterial cell division regulation: characterization of the dnaH locus of Escherichia coli. J Bacteriol 119, 443–449.
    [Google Scholar]
  18. Flower, A. M. & McHenry, C. S. ( 1990; ). The γ-subunit of DNA polymerase-III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 87, 3713–3717.[CrossRef]
    [Google Scholar]
  19. Fujikawa, N., Kurumizaka, H., Nureki, O., Terada, T., Shirouzu, M., Katayama, T. & Yokoyama, S. ( 2003; ). Structural basis of replication origin recognition by the DnaA protein. Nucl Acids Res 31, 2077–2086.[CrossRef]
    [Google Scholar]
  20. Fuller, R. S., Funnell, B. E. & Kornberg, A. ( 1984; ). The DnaA protein complex with the E. coli chromosomal origin (oriC) and other sites. Cell 38, 889–900.[CrossRef]
    [Google Scholar]
  21. Garner, J., Durrer, P., Kitchen, J., Brunner, J. & Crooke, E. ( 1998; ). Membrane-mediated release of nucleotide from an initiator of chromosomal replication, Escherichia coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer. J Biol Chem 273, 5167–5173.[CrossRef]
    [Google Scholar]
  22. Gasparini, P., Bonizzato, A., Dognini, M. & Pignatti, P. F. ( 1992; ). Restriction site generating-polymerase chain reaction (RG-PCR) for the probeless detection of hidden genetic variation: application to the study of some common cystic fibrosis mutations. Mol Cell Probes 6, 1–7.[CrossRef]
    [Google Scholar]
  23. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. & Bairoch, A. ( 2003; ). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784–3788.[CrossRef]
    [Google Scholar]
  24. Ginés-Candelaria, E., Blinkova, A. & Walker, J. R. ( 1995; ). Mutations in Escherichia coli dnaA which suppress a dnaX(Ts) polymerization mutation and are dominant when located in the chromosomal allele and recessive on plasmids. J Bacteriol 177, 705–715.
    [Google Scholar]
  25. Kitagawa, R., Ozaki, T., Moriya, S. & Ogawa, T. ( 1998; ). Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev 12, 3032.[CrossRef]
    [Google Scholar]
  26. Lin, L. L. & Little, J. W. ( 1988; ). Isolation and characterization of noncleavable (Ind) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 170, 2163–2173.
    [Google Scholar]
  27. Løbner-Olesen, A., Skarstad, K., Hansen, F. G., von Meyenburg, K. & Boye, E. ( 1989; ). The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57, 881–889.[CrossRef]
    [Google Scholar]
  28. Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. ( 1994; ). SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426.[CrossRef]
    [Google Scholar]
  29. Marszalek, J. & Kaguni, J. M. ( 1994; ). DnaA protein directs the binding of DnaB protein in Escherichia coli. J Biol Chem 269, 4883–4890.
    [Google Scholar]
  30. McGarry, K. C., Ryan, V. T., Grimwade, J. E. & Leonard, A. C. ( 2004; ). Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci U S A 101, 2811–2816.[CrossRef]
    [Google Scholar]
  31. McHenry, C. S. ( 2003; ). Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49, 1157–1165.[CrossRef]
    [Google Scholar]
  32. Messer, W. ( 2002; ). The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 26, 355–374.
    [Google Scholar]
  33. Miller, J. F. ( 1992; ). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Mizushima, T., Nishida, S., Kurokawa, K., Katayama, T., Miki, T. & Sekimizu, K. ( 1997; ). Negative control of DNA replication by hydrolysis of ATP bound to DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. EMBO J 16, 3724–3730.[CrossRef]
    [Google Scholar]
  35. Morigen, Boye, E., Skarstad, K. & Løbner-Olesen, A. ( 2001; ). Regulation of chromosomal replication by DnaA protein availability in Escherichia coli: effects of the datA region. Biochim Biophys Acta 1521, 73–80.[CrossRef]
    [Google Scholar]
  36. Morigen, Lobner-Olesen, A. & Skarstad, K. ( 2003; ). Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 50, 349–362.[CrossRef]
    [Google Scholar]
  37. Murphy, K. C. ( 1998; ). Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180, 2063–2071.
    [Google Scholar]
  38. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. ( 1999; ). AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9, 27–43.
    [Google Scholar]
  39. Nishida, S., Fujimitsu, K., Sekimizu, K., Ohmura, T., Ueda, T. & Katayama, T. ( 2002; ). A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidence from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J Biol Chem 277, 14986–14995.[CrossRef]
    [Google Scholar]
  40. Ogawa, T., Yamada, Y., Kuroda, T., Kishi, T. & Moriya, S. ( 2002; ). The datA locus predominantly contributes to the initiator titration mechanism in the control of replication initiation in Escherichia coli. Mol Microbiol 44, 1367–1375.[CrossRef]
    [Google Scholar]
  41. Olsson, J. A., Nordstrom, K., Hjort, K. & Dasgupta, S. ( 2003; ). Eclipse-synchrony relationship in Escherichia coli strains with mutations affecting sequestration, initiation of replication and superhelicity of the bacterial chromosome. J Mol Biol 334, 919–931.[CrossRef]
    [Google Scholar]
  42. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. ( 1998; ). RuvAB acts at arrested replication forks. Cell 95, 419–430.[CrossRef]
    [Google Scholar]
  43. Seitz, H., Weigel, C. & Messer, W. ( 2000; ). The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 37, 1270–1279.[CrossRef]
    [Google Scholar]
  44. Skarstad, K. & Løbner-Olesen, A. ( 2003; ). Stable co-existence of separate replicons in Escherichia coli is dependent on once-per-cell-cycle initiation. EMBO J 22, 140–150.[CrossRef]
    [Google Scholar]
  45. Skarstad, K., Boye, E. & Steen, H. B. ( 1986; ). Timing of initiation of chromosome replication in individual E. coli cells. EMBO J 5, 1711–1717.
    [Google Scholar]
  46. Skarstad, K., von Meyenburg, K., Hansen, F. G. & Boye, E. ( 1988; ). Coordination of chromosome-replication initiation in Escherichia coli – effects of different dnaA alleles. J Bacteriol 170, 852–858.
    [Google Scholar]
  47. Speck, C., Weigel, C. & Messer, W. ( 1999; ). ATP- and ADP-DnaA protein, a molecular switch in gene regulation. EMBO J 18, 6169–6176.[CrossRef]
    [Google Scholar]
  48. Su'etsugu, M., Takata, M., Kubota, T., Matsuda, Y. & Katayama, T. ( 2004; ). Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. Genes Cells 9, 509–522.[CrossRef]
    [Google Scholar]
  49. Walker, J. R., Ramsey, J. A. & Haldenwang, W. G. ( 1982; ). Interaction of the Escherichia coli DnaA initiation protein with the DnaZ polymerization protein in vivo. Proc Natl Acad Sci U S A 79, 3340–3344.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27630-0
Loading
/content/journal/micro/10.1099/mic.0.27630-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error