1887

Abstract

Mycobacteria produce -lactamases and are intrinsically resistant to -lactam antibiotics. In addition to the -lactamases, cell envelope permeability and variations in certain peptidoglycan biosynthetic enzymes are believed to contribute to -lactam resistance in these organisms. To allow the study of these additional mechanisms, mutants of the major -lactamases, BlaC and BlaS, were generated in the pathogenic strain H37Rv and the model organism strain PM274. The mutants PM638 (Δ) and PM759 (Δ) showed an increase in susceptibility to -lactam antibiotics, as determined by disc diffusion and minimal inhibitory concentration (MIC) assays. The susceptibility of the mutants, as assayed by disc diffusion tests, to penicillin-type -lactam antibiotics was affected most, compared to the cephalosporin-type -lactam antibiotics. The mutant had no detectable -lactamase activity, while the mutant had a residual type 1 -lactamase activity. We identified a gene, , encoding a putative cephalosporinase in . A double -lactamase mutant of , PM976 (ΔΔ : : ), had no detectable -lactamase activity, but its susceptibility to -lactam antibiotics was not significantly different from that of the Δ parental strain, PM759. The mutants generated in this study will help determine the contribution of other -lactam resistance mechanisms in addition to serving as tools to study the biology of peptidoglycan biosynthesis in these organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27629-0
2005-02-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510521.html?itemId=/content/journal/micro/10.1099/mic.0.27629-0&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1980; The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci289:321–331[CrossRef]
    [Google Scholar]
  2. Ambler R. P., Coulson A. F., Frere J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. 1991; A standard numbering scheme for the class A β-lactamases. Biochem J276:269–270
    [Google Scholar]
  3. Basu D., Narayankumar D. V., Van Beeumen J., Basu J. 1997; Characterization of a β-lactamase from Mycobacterium smegmatis SN2. Biochem Mol Biol Int43:557–562
    [Google Scholar]
  4. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother39:1211–1233[CrossRef]
    [Google Scholar]
  5. Casal M. J., Rodriguez F. C., Luna M. D., Benavente M. C. 1987; In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid. Antimicrob Agents Chemother31:132–133[CrossRef]
    [Google Scholar]
  6. Chambers H. F., Moreau D., Yajko D.. 7 other authors 1995; Can penicillins and other β-lactam antibiotics be used to treat tuberculosis?. Antimicrob Agents Chemother39:2620–2624[CrossRef]
    [Google Scholar]
  7. Chambers H. F., Kocagoz T., Sipit T., Turner J., Hopewell P. C. 1998; Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis26:874–877[CrossRef]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J. & 39 other authors. 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  9. Consaul S. A., Jacobs W. R., Pavelka M. S.. Jr Jr 2003; Extragenic suppression of the requirement for diaminopimelate in diaminopimelate auxotrophs of Mycobacterium smegmatis. FEMS Microbiol Lett225:131–135[CrossRef]
    [Google Scholar]
  10. Cynamon M. H., Palmer G. S. 1983; In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother24:429–431[CrossRef]
    [Google Scholar]
  11. Cynamon M. H., Patapow A. 1981; In vitro susceptibility of Mycobacterium fortuitum to cefoxitin. Antimicrob Agents Chemother19:205–207[CrossRef]
    [Google Scholar]
  12. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA282:677–686[CrossRef]
    [Google Scholar]
  13. Engelhardt H., Heinz C., Niederweis M. 2002; A tetrameric porin limits the cell wall permeability of Mycobacterium smegmatis.. J Biol Chem277:37567–37572[CrossRef]
    [Google Scholar]
  14. Fattorini L., Scardaci G., Jin S. H., Amicosante G., Franceschini N., Oratore A., Orefici G. 1991; β-Lactamase of Mycobacterium fortuitum: kinetics of production and relationship with resistance to β-lactam antibiotics. Antimicrob Agents Chemother35:1760–1764[CrossRef]
    [Google Scholar]
  15. Hackbarth C. J., Unsal I., Chambers H. F. 1997; Cloning and sequence analysis of a class A β-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother41:1182–1185
    [Google Scholar]
  16. Jacobs W. R., Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Jr 1991; Genetic systems for mycobacteria. Methods Enzymol204:537–555
    [Google Scholar]
  17. Jarboe E., Stone B. L., Burman W. J., Wallace R. J., Brown B. A., Reves R. R., Wilson M. L. Jr 1998; Evaluation of a disk diffusion method for determining susceptibility of Mycobacterium avium complex to clarithromycin. Diagn Microbiol Infect Dis30:197–203[CrossRef]
    [Google Scholar]
  18. Jarlier V., Nikaido H. 1990; Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol172:1418–1423
    [Google Scholar]
  19. Jarlier V., Nikaido H. 1994; Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett123:11–18[CrossRef]
    [Google Scholar]
  20. Jarlier V., Gutmann L., Nikaido H. 1991; Interplay of cell wall barrier and β-lactamase activity determines high resistance toβ-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother35:1937–1939[CrossRef]
    [Google Scholar]
  21. Jorgensen J. H., Turnidge J. D., Washington J. A. 1999; Antibacterial susceptibility tests: dilution and disk diffusion methods. In Manual of Clinical Microbiology pp.1526–1543 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Kaneda S., Yabu K. 1983; Purification and some properties of β-lactamase from Mycobacterium smegmatis. Microbiol Immunol27:191–193[CrossRef]
    [Google Scholar]
  23. Kasik J. E. 1979; Mycobacterial β-lactamases. In β-Lactamases pp339–350 Edited by Hamilton-Miller J. M. T., Smith J. T.. New York: Academic Press;
    [Google Scholar]
  24. Kwon H. H., Tomioka H., Saito H. 1995; Distribution and characterization of β-lactamases of mycobacteria and related organisms. Tuber Lung Dis76:141–148
    [Google Scholar]
  25. Li X.-Z., Zhang L., Nikaido H. 2004; Efflux-pump mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother48:2415–2423[CrossRef]
    [Google Scholar]
  26. Mailaender C., Reiling N., Engelhardt H., Bossmann S., Ehlers S., Niederweis M. 2004; The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology150:853–864[CrossRef]
    [Google Scholar]
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Nadler J. P., Berger J., Nord J. A., Cofsky R., Saxena M. 1991; Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. Chest99:1025–1026[CrossRef]
    [Google Scholar]
  29. Niederweis M. 2003; Mycobacterial porins – new channel proteins in unique outer membranes. Mol Microbiol49:1167–1177[CrossRef]
    [Google Scholar]
  30. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother1:283–288[CrossRef]
    [Google Scholar]
  31. Pavelka M. S., Jacobs W. R.. Jr & Jr 1996; Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol178:6496–6507
    [Google Scholar]
  32. Pavelka M. S., Jacobs W. R.. Jr & Jr 1999; Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol181:4780–4789
    [Google Scholar]
  33. Quinting B., Galleni M., Timm J., Gicquel B., Amicosante G., Frere J. M. 1997; Purification and properties of the Mycobacterium smegmatis mc(2)155 β-lactamase. FEMS Microbiol Lett149:11–15[CrossRef]
    [Google Scholar]
  34. Segura C., Salvado M., Collado I., Chaves J., Coira A. 1998; Contribution of β-lactamases to β-lactam susceptibilities of susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother42:1524–1526
    [Google Scholar]
  35. Severin A., Severina E., Tomasz A. 1997; Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob Agents Chemother41:504–510
    [Google Scholar]
  36. Sorg T. B., Cynamon M. H. 1987; Comparison of four β-lactamase inhibitors in combination with ampicillin against Mycobacterium tuberculosis. J Antimicrob Chemother19:59–64[CrossRef]
    [Google Scholar]
  37. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol14:283–290[CrossRef]
    [Google Scholar]
  38. Utrup L. J., Moore T. D., Actor P., Poupard J. A. 1995; Susceptibilities of nontuberculosis mycobacterial species to amoxicillin-clavulanic acid alone and in combination with antimycobacterial agents. Antimicrob Agents Chemother39:1454–1457[CrossRef]
    [Google Scholar]
  39. Voladri R. K., Lakey D. L., Hennigan S. H., Menzies B. E., Edwards K. M., Kernodle D. S. 1998; Recombinant expression and characterization of the major β-lactamase of Mycobacterium tuberculosis. Antimicrob Agents Chemother42:1375–1381
    [Google Scholar]
  40. Wallace R. J. Jr, Dalovisio J. R., Pankey G. A. 1979; Disk diffusion testing of susceptibility of Mycobacterium fortuitum and Mycobacterium chelonei to antibacterial agents. Antimicrob Agents Chemother16:611–614[CrossRef]
    [Google Scholar]
  41. Wong C. S., Palmer G. S., Cynamon M. H. 1988; In-vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium kansasii to amoxycillin and ticarcillin in combination with clavulanic acid. J Antimicrob Chemother22:863–866[CrossRef]
    [Google Scholar]
  42. Yabu K., Kaneda S., Ochiai T. 1985; Relationship between β-lactamase activity and resistance to β-lactam antibiotics in Mycobacterium smegmatis. Microbiol Immunol29:803–809[CrossRef]
    [Google Scholar]
  43. Zhang Y., Steingrube V. A., Wallace R. J.. Jr 1992; Beta-lactamase inhibitors and the inducibility of the beta-lactamases of Mycobacterium tuberculosis. Am Rev Respir Dis145:657–660[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27629-0
Loading
/content/journal/micro/10.1099/mic.0.27629-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error