1887

Abstract

Mycobacteria produce -lactamases and are intrinsically resistant to -lactam antibiotics. In addition to the -lactamases, cell envelope permeability and variations in certain peptidoglycan biosynthetic enzymes are believed to contribute to -lactam resistance in these organisms. To allow the study of these additional mechanisms, mutants of the major -lactamases, BlaC and BlaS, were generated in the pathogenic strain H37Rv and the model organism strain PM274. The mutants PM638 (Δ) and PM759 (Δ) showed an increase in susceptibility to -lactam antibiotics, as determined by disc diffusion and minimal inhibitory concentration (MIC) assays. The susceptibility of the mutants, as assayed by disc diffusion tests, to penicillin-type -lactam antibiotics was affected most, compared to the cephalosporin-type -lactam antibiotics. The mutant had no detectable -lactamase activity, while the mutant had a residual type 1 -lactamase activity. We identified a gene, , encoding a putative cephalosporinase in . A double -lactamase mutant of , PM976 (ΔΔ : : ), had no detectable -lactamase activity, but its susceptibility to -lactam antibiotics was not significantly different from that of the Δ parental strain, PM759. The mutants generated in this study will help determine the contribution of other -lactam resistance mechanisms in addition to serving as tools to study the biology of peptidoglycan biosynthesis in these organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27629-0
2005-02-01
2021-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510521.html?itemId=/content/journal/micro/10.1099/mic.0.27629-0&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1980; The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331 [CrossRef]
    [Google Scholar]
  2. Ambler R. P., Coulson A. F., Frere J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. 1991; A standard numbering scheme for the class A β-lactamases. Biochem J 276:269–270
    [Google Scholar]
  3. Basu D., Narayankumar D. V., Van Beeumen J., Basu J. 1997; Characterization of a β-lactamase from Mycobacterium smegmatis SN2. Biochem Mol Biol Int 43:557–562
    [Google Scholar]
  4. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [CrossRef]
    [Google Scholar]
  5. Casal M. J., Rodriguez F. C., Luna M. D., Benavente M. C. 1987; In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid. Antimicrob Agents Chemother 31:132–133 [CrossRef]
    [Google Scholar]
  6. Chambers H. F., Moreau D., Yajko D. 7 other authors 1995; Can penicillins and other β-lactam antibiotics be used to treat tuberculosis?. Antimicrob Agents Chemother 39:2620–2624 [CrossRef]
    [Google Scholar]
  7. Chambers H. F., Kocagoz T., Sipit T., Turner J., Hopewell P. C. 1998; Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis 26:874–877 [CrossRef]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  9. Consaul S. A., Jacobs W. R., Pavelka M. S. Jr Jr 2003; Extragenic suppression of the requirement for diaminopimelate in diaminopimelate auxotrophs of Mycobacterium smegmatis. FEMS Microbiol Lett 225:131–135 [CrossRef]
    [Google Scholar]
  10. Cynamon M. H., Palmer G. S. 1983; In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother 24:429–431 [CrossRef]
    [Google Scholar]
  11. Cynamon M. H., Patapow A. 1981; In vitro susceptibility of Mycobacterium fortuitum to cefoxitin. Antimicrob Agents Chemother 19:205–207 [CrossRef]
    [Google Scholar]
  12. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686 [CrossRef]
    [Google Scholar]
  13. Engelhardt H., Heinz C., Niederweis M. 2002; A tetrameric porin limits the cell wall permeability of Mycobacterium smegmatis.. J Biol Chem 277:37567–37572 [CrossRef]
    [Google Scholar]
  14. Fattorini L., Scardaci G., Jin S. H., Amicosante G., Franceschini N., Oratore A., Orefici G. 1991; β-Lactamase of Mycobacterium fortuitum: kinetics of production and relationship with resistance to β-lactam antibiotics. Antimicrob Agents Chemother 35:1760–1764 [CrossRef]
    [Google Scholar]
  15. Hackbarth C. J., Unsal I., Chambers H. F. 1997; Cloning and sequence analysis of a class A β-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 41:1182–1185
    [Google Scholar]
  16. Jacobs W. R., Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Jr 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  17. Jarboe E., Stone B. L., Burman W. J., Wallace R. J., Brown B. A., Reves R. R., Wilson M. L. Jr 1998; Evaluation of a disk diffusion method for determining susceptibility of Mycobacterium avium complex to clarithromycin. Diagn Microbiol Infect Dis 30:197–203 [CrossRef]
    [Google Scholar]
  18. Jarlier V., Nikaido H. 1990; Permeability barrier to hydrophilic solutes in Mycobacterium chelonei . J Bacteriol 172:1418–1423
    [Google Scholar]
  19. Jarlier V., Nikaido H. 1994; Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18 [CrossRef]
    [Google Scholar]
  20. Jarlier V., Gutmann L., Nikaido H. 1991; Interplay of cell wall barrier and β-lactamase activity determines high resistance toβ-lactam antibiotics in Mycobacterium chelonae . Antimicrob Agents Chemother 35:1937–1939 [CrossRef]
    [Google Scholar]
  21. Jorgensen J. H., Turnidge J. D., Washington J. A. 1999; Antibacterial susceptibility tests: dilution and disk diffusion methods. In Manual of Clinical Microbiology pp. 1526–1543 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Kaneda S., Yabu K. 1983; Purification and some properties of β-lactamase from Mycobacterium smegmatis . Microbiol Immunol 27:191–193 [CrossRef]
    [Google Scholar]
  23. Kasik J. E. 1979; Mycobacterial β-lactamases. In β-Lactamases pp 339–350 Edited by Hamilton-Miller J. M. T., Smith J. T. New York: Academic Press;
    [Google Scholar]
  24. Kwon H. H., Tomioka H., Saito H. 1995; Distribution and characterization of β-lactamases of mycobacteria and related organisms. Tuber Lung Dis 76:141–148
    [Google Scholar]
  25. Li X.-Z., Zhang L., Nikaido H. 2004; Efflux-pump mediated intrinsic drug resistance in Mycobacterium smegmatis . Antimicrob Agents Chemother 48:2415–2423 [CrossRef]
    [Google Scholar]
  26. Mailaender C., Reiling N., Engelhardt H., Bossmann S., Ehlers S., Niederweis M. 2004; The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis . Microbiology 150:853–864 [CrossRef]
    [Google Scholar]
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Nadler J. P., Berger J., Nord J. A., Cofsky R., Saxena M. 1991; Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis . Chest 99:1025–1026 [CrossRef]
    [Google Scholar]
  29. Niederweis M. 2003; Mycobacterial porins – new channel proteins in unique outer membranes. Mol Microbiol 49:1167–1177 [CrossRef]
    [Google Scholar]
  30. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288 [CrossRef]
    [Google Scholar]
  31. Pavelka M. S., Jacobs W. R. Jr & Jr 1996; Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis . J Bacteriol 178:6496–6507
    [Google Scholar]
  32. Pavelka M. S., Jacobs W. R. Jr & Jr 1999; Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181:4780–4789
    [Google Scholar]
  33. Quinting B., Galleni M., Timm J., Gicquel B., Amicosante G., Frere J. M. 1997; Purification and properties of the Mycobacterium smegmatis mc(2)155 β-lactamase. FEMS Microbiol Lett 149:11–15 [CrossRef]
    [Google Scholar]
  34. Segura C., Salvado M., Collado I., Chaves J., Coira A. 1998; Contribution of β-lactamases to β-lactam susceptibilities of susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 42:1524–1526
    [Google Scholar]
  35. Severin A., Severina E., Tomasz A. 1997; Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob Agents Chemother 41:504–510
    [Google Scholar]
  36. Sorg T. B., Cynamon M. H. 1987; Comparison of four β-lactamase inhibitors in combination with ampicillin against Mycobacterium tuberculosis. J Antimicrob Chemother 19:59–64 [CrossRef]
    [Google Scholar]
  37. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol 14:283–290 [CrossRef]
    [Google Scholar]
  38. Utrup L. J., Moore T. D., Actor P., Poupard J. A. 1995; Susceptibilities of nontuberculosis mycobacterial species to amoxicillin-clavulanic acid alone and in combination with antimycobacterial agents. Antimicrob Agents Chemother 39:1454–1457 [CrossRef]
    [Google Scholar]
  39. Voladri R. K., Lakey D. L., Hennigan S. H., Menzies B. E., Edwards K. M., Kernodle D. S. 1998; Recombinant expression and characterization of the major β-lactamase of Mycobacterium tuberculosis . Antimicrob Agents Chemother 42:1375–1381
    [Google Scholar]
  40. Wallace R. J. Jr, Dalovisio J. R., Pankey G. A. 1979; Disk diffusion testing of susceptibility of Mycobacterium fortuitum and Mycobacterium chelonei to antibacterial agents. Antimicrob Agents Chemother 16:611–614 [CrossRef]
    [Google Scholar]
  41. Wong C. S., Palmer G. S., Cynamon M. H. 1988; In-vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium kansasii to amoxycillin and ticarcillin in combination with clavulanic acid. J Antimicrob Chemother 22:863–866 [CrossRef]
    [Google Scholar]
  42. Yabu K., Kaneda S., Ochiai T. 1985; Relationship between β-lactamase activity and resistance to β-lactam antibiotics in Mycobacterium smegmatis . Microbiol Immunol 29:803–809 [CrossRef]
    [Google Scholar]
  43. Zhang Y., Steingrube V. A., Wallace R. J. Jr 1992; Beta-lactamase inhibitors and the inducibility of the beta-lactamases of Mycobacterium tuberculosis . Am Rev Respir Dis 145:657–660 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27629-0
Loading
/content/journal/micro/10.1099/mic.0.27629-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error