1887

Abstract

Isolation and subsequent knockout of a -homologous gene in DSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functional gene. Evidence for duplicates was also obtained for two other strains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes ( and ) was found to be damage-inducible. Transcription from the promoter was significantly higher than that of . Since a knockout could not be achieved, functional complementation studies were performed in . Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving both gene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway in that differs from that of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27626-0
2005-03-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510775.html?itemId=/content/journal/micro/10.1099/mic.0.27626-0&mimeType=html&fmt=ahah

References

  1. Bianco P. R., Tracy R. B., Kowalczykowski S. C. 1998; DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci3:570–603
    [Google Scholar]
  2. Campoy S., Mazon G., Fernandez de Henestrosa A. R., Llagostera M., Monteiro P. B., Barbé J. 2002; A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. Microbiology148:3583–3597
    [Google Scholar]
  3. Campoy S., Fontes M., Padmanabhan S., Cortes P., Llagostera M., Barbé J. 2003; LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol Microbiol49:769–781
    [Google Scholar]
  4. Chang A. C., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol134:1141–1156
    [Google Scholar]
  5. Cheo D. L., Bayles K. W., Yasbin R. E. 1991; Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol173:1696–1703
    [Google Scholar]
  6. Courcelle J., Khodursky A., Peter B., Brown P. O., Hanawalt P. C. 2001; Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics158:41–64
    [Google Scholar]
  7. Cox M. M. 1999; Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acids Res Mol Biol63:311–366
    [Google Scholar]
  8. Duwat P., Ehrlich S. D., Gruss A. 1992; A general method for cloning recA genes of gram-positive bacteria by polymerase chain reaction. J Bacteriol174:5171–5175
    [Google Scholar]
  9. Dybvig K., Hollingshead S. K., Heath D. G., Clewell D. B., Sun F., Woodard A. 1992; Degenerate oligonucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and mycoplasmas. J Bacteriol174:2729–2732
    [Google Scholar]
  10. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol41:1105–1123
    [Google Scholar]
  11. English J. D., Vary P. S. 1986; Isolation of recombination-defective and UV-sensitive mutants of Bacillus megaterium. J Bacteriol165:155–160
    [Google Scholar]
  12. Friedman B. M., Yasbin R. E. 1983; The genetics and specificity of the constitutive excision repair system of Bacillus subtilis. Mol Gen Genet190:481–486[CrossRef]
    [Google Scholar]
  13. Haijema B. J., Van Sinderen D., Winterling K., Kooistra J., Venema G., Hamoen L. W. 1996; Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol Microbiol22:75–85[CrossRef]
    [Google Scholar]
  14. Hamoen L. W., Haijema B., Bijlsma J. J., Venema G., Lovett C. M. 2001; The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem276:42901–42907[CrossRef]
    [Google Scholar]
  15. Hamoen L. W., Smits W. K., de Jong A., Holsappel S., Kuipers O. P. 2002; Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res30:5517–5528[CrossRef]
    [Google Scholar]
  16. Huisman O., D'Ari R. 1981; An inducible DNA replication-cell division coupling mechanism in E. coli. Nature290:797–799[CrossRef]
    [Google Scholar]
  17. Hunger W., Claus D. 1981; Taxonomic studies on Bacillus megaterium and on agarolytic Bacillus strains. In The Aerobic Endospore-Forming Bacteria: Classification and Identification pp217–239 Edited by Berkeley R. C. W., Goodfellow M.. London: Academic Press;
    [Google Scholar]
  18. Jara M., Nunez C., Campoy S., Fernandez de Henestrosa A. R., Lovley D. R., Barbé J. 2003; Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. J Bacteriol185:2493–2502[CrossRef]
    [Google Scholar]
  19. Johnston J. L., Sloan J., Fyfe J. A., Davies J. K., Rood J. I. 1997; The recA gene from Clostridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology143:885–890[CrossRef]
    [Google Scholar]
  20. Karlin S., Weinstock G. M., Brendel V. 1995; Bacterial classifications derived from recA protein sequence comparisons. J Bacteriol177:6881–6893
    [Google Scholar]
  21. Kawai Y., Moriya S., Ogasawara N. 2003; Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol47:1113–1122[CrossRef]
    [Google Scholar]
  22. Ko M., Choi H., Park C. 2002; Group I self-splicing intron in the recA gene of Bacillus anthracis. J Bacteriol184:3917–3922[CrossRef]
    [Google Scholar]
  23. Lammers M., Nahrstedt H., Meinhardt F. 2004; The Bacillus megaterium comE locus encodes a functional DNA uptake protein. J Basic Microbiol44:451–458[CrossRef]
    [Google Scholar]
  24. Lee J. S., Wittchen K. D., Stahl C., Strey J., Meinhardt F. 2001; Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319. Appl Microbiol Biotechnol56:205–211[CrossRef]
    [Google Scholar]
  25. Little J. W. 1991; Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie73:411–421[CrossRef]
    [Google Scholar]
  26. Liveris D., Mulay V., Schwartz I. 2004; Functional properties of Borrelia burgdorferi recA. J Bacteriol186:2275–2280[CrossRef]
    [Google Scholar]
  27. Marrero R., Yasbin R. E. 1988; Cloning of the Bacillus subtilis recE+ gene and functional expression ofrecE+ in B. subtilis. J Bacteriol170:335–344
    [Google Scholar]
  28. Meinhardt F., Bußkamp M., Wittchen K. D. 1994; Cloning and sequencing of the leuC and nprM genes and a putative spoIV gene from Bacillus megaterium DSM319. Appl Microbiol Biotechnol41:344–351[CrossRef]
    [Google Scholar]
  29. Miller J. H. 1972; Experiments in Molecular Genetics pp352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Muth G., Frese D., Kleber A., Wohlleben W. 1997; Mutational analysis of the Streptomyces lividans recA gene suggests that only mutants with residual activity remain viable. Mol Gen Genet255:420–428[CrossRef]
    [Google Scholar]
  31. Nahrstedt H., Meinhardt F. 2004; Structural and functional characterization of the Bacillus megaterium uvrBA locus and generation of UV-sensitive mutants. Appl Microbiol Biotechnol65:193–199
    [Google Scholar]
  32. Norioka N., Hsu M. Y., Inouye S., Inouye M. 1995; Two recA genes in Myxococcus xanthus. J Bacteriol177:4179–4182
    [Google Scholar]
  33. Radman M. 1975; SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci5A:355–367
    [Google Scholar]
  34. Raymond-Denise A., Guillen N. 1991; Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol173:7084–7091
    [Google Scholar]
  35. Roca A. I., Cox M. M. 1990; The RecA protein: structure and function. Crit Rev Biochem Mol Biol25:415–456[CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sassanfar M., Roberts J. W. 1990; Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol212:79–96[CrossRef]
    [Google Scholar]
  38. Sciochetti S. A., Blakely G. W., Piggot P. J. 2001; Growth phase variation in cell and nucleoid morphology in a Bacillus subtilis recA mutant. J Bacteriol183:2963–2968[CrossRef]
    [Google Scholar]
  39. Strey J., Wittchen K. D., Meinhardt F. 1999; Regulation of beta-galactosidase expression in Bacillus megaterium DSM319 by a XylS/AraC-type transcriptional activator. J Bacteriol181:3288–3292
    [Google Scholar]
  40. Tapias A., Fernandez S., Alonso J. C., Barbé J. 2002; Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res30:1539–1546[CrossRef]
    [Google Scholar]
  41. Van Sinderen D., Luttinger A., Kong L., Dubnau D., Venema G., Hamoen L. 1995; comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol15:455–462[CrossRef]
    [Google Scholar]
  42. Vary P. S. 1994; Prime time for Bacillus megaterium. Microbiology140:1001–1013[CrossRef]
    [Google Scholar]
  43. Vary P. S., Halsey W. F. 1980; Host-range and partial characterization of several new bacteriophages for Bacillus megaterium. QMB1551. J Gen Virol51:137–146[CrossRef]
    [Google Scholar]
  44. Vierling S., Weber T., Wohlleben W., Muth G. 2001; Evidence that an additional mutation is required to tolerate insertional inactivation of the Streptomyces lividans recA gene. J Bacteriol183:4374–4381[CrossRef]
    [Google Scholar]
  45. Vorobjeva I., Khemel A., Alföldi I. 1980; Transformation of Bacillus megaterium protoplasts by plasmid DNA. FEMS Microbiol Lett7:261–263[CrossRef]
    [Google Scholar]
  46. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev48:60–93
    [Google Scholar]
  47. Winterling K. W., Chafin D., Hayes J. J., Sun J., Levine A. S., Yasbin R. E., Woodgate R. 1998; The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol180:2201–2211
    [Google Scholar]
  48. Wittchen K. D., Meinhardt F. 1995; Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol42:871–877[CrossRef]
    [Google Scholar]
  49. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  50. Yasbin R. E., Cheo D. L., Bayles K. W. 1991; The SOB system of Bacillus subtilis: a global regulon involved in DNA repair and differentiation. Res Microbiol142:885–892[CrossRef]
    [Google Scholar]
  51. Yasbin R. E., Cheo D. L., Bayles K. W. 1992; Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol Microbiol6:1263–1270[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27626-0
Loading
/content/journal/micro/10.1099/mic.0.27626-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error