1887

Abstract

Isolation and subsequent knockout of a -homologous gene in DSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functional gene. Evidence for duplicates was also obtained for two other strains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes ( and ) was found to be damage-inducible. Transcription from the promoter was significantly higher than that of . Since a knockout could not be achieved, functional complementation studies were performed in . Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving both gene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway in that differs from that of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27626-0
2005-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510775.html?itemId=/content/journal/micro/10.1099/mic.0.27626-0&mimeType=html&fmt=ahah

References

  1. Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. ( 1998; ). DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3, 570–603.
    [Google Scholar]
  2. Campoy, S., Mazon, G., Fernandez de Henestrosa, A. R., Llagostera, M., Monteiro, P. B. & Barbé, J. ( 2002; ). A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. Microbiology 148, 3583–3597.
    [Google Scholar]
  3. Campoy, S., Fontes, M., Padmanabhan, S., Cortes, P., Llagostera, M. & Barbé, J. ( 2003; ). LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol Microbiol 49, 769–781.
    [Google Scholar]
  4. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  5. Cheo, D. L., Bayles, K. W. & Yasbin, R. E. ( 1991; ). Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol 173, 1696–1703.
    [Google Scholar]
  6. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. ( 2001; ). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64.
    [Google Scholar]
  7. Cox, M. M. ( 1999; ). Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acids Res Mol Biol 63, 311–366.
    [Google Scholar]
  8. Duwat, P., Ehrlich, S. D. & Gruss, A. ( 1992; ). A general method for cloning recA genes of gram-positive bacteria by polymerase chain reaction. J Bacteriol 174, 5171–5175.
    [Google Scholar]
  9. Dybvig, K., Hollingshead, S. K., Heath, D. G., Clewell, D. B., Sun, F. & Woodard, A. ( 1992; ). Degenerate oligonucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and mycoplasmas. J Bacteriol 174, 2729–2732.
    [Google Scholar]
  10. Eisen, J. A. ( 1995; ). The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41, 1105–1123.
    [Google Scholar]
  11. English, J. D. & Vary, P. S. ( 1986; ). Isolation of recombination-defective and UV-sensitive mutants of Bacillus megaterium. J Bacteriol 165, 155–160.
    [Google Scholar]
  12. Friedman, B. M. & Yasbin, R. E. ( 1983; ). The genetics and specificity of the constitutive excision repair system of Bacillus subtilis. Mol Gen Genet 190, 481–486.[CrossRef]
    [Google Scholar]
  13. Haijema, B. J., Van Sinderen, D., Winterling, K., Kooistra, J., Venema, G. & Hamoen, L. W. ( 1996; ). Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol Microbiol 22, 75–85.[CrossRef]
    [Google Scholar]
  14. Hamoen, L. W., Haijema, B., Bijlsma, J. J., Venema, G. & Lovett, C. M. ( 2001; ). The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem 276, 42901–42907.[CrossRef]
    [Google Scholar]
  15. Hamoen, L. W., Smits, W. K., de Jong, A., Holsappel, S. & Kuipers, O. P. ( 2002; ). Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30, 5517–5528.[CrossRef]
    [Google Scholar]
  16. Huisman, O. & D'Ari, R. ( 1981; ). An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290, 797–799.[CrossRef]
    [Google Scholar]
  17. Hunger, W. & Claus, D. ( 1981; ). Taxonomic studies on Bacillus megaterium and on agarolytic Bacillus strains. In The Aerobic Endospore-Forming Bacteria: Classification and Identification, pp. 217–239. Edited by R. C. W. Berkeley & M. Goodfellow. London: Academic Press.
  18. Jara, M., Nunez, C., Campoy, S., Fernandez de Henestrosa, A. R., Lovley, D. R. & Barbé, J. ( 2003; ). Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. J Bacteriol 185, 2493–2502.[CrossRef]
    [Google Scholar]
  19. Johnston, J. L., Sloan, J., Fyfe, J. A., Davies, J. K. & Rood, J. I. ( 1997; ). The recA gene from Clostridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology 143, 885–890.[CrossRef]
    [Google Scholar]
  20. Karlin, S., Weinstock, G. M. & Brendel, V. ( 1995; ). Bacterial classifications derived from recA protein sequence comparisons. J Bacteriol 177, 6881–6893.
    [Google Scholar]
  21. Kawai, Y., Moriya, S. & Ogasawara, N. ( 2003; ). Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47, 1113–1122.[CrossRef]
    [Google Scholar]
  22. Ko, M., Choi, H. & Park, C. ( 2002; ). Group I self-splicing intron in the recA gene of Bacillus anthracis. J Bacteriol 184, 3917–3922.[CrossRef]
    [Google Scholar]
  23. Lammers, M., Nahrstedt, H. & Meinhardt, F. ( 2004; ). The Bacillus megaterium comE locus encodes a functional DNA uptake protein. J Basic Microbiol 44, 451–458.[CrossRef]
    [Google Scholar]
  24. Lee, J. S., Wittchen, K. D., Stahl, C., Strey, J. & Meinhardt, F. ( 2001; ). Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 56, 205–211.[CrossRef]
    [Google Scholar]
  25. Little, J. W. ( 1991; ). Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73, 411–421.[CrossRef]
    [Google Scholar]
  26. Liveris, D., Mulay, V. & Schwartz, I. ( 2004; ). Functional properties of Borrelia burgdorferi recA. J Bacteriol 186, 2275–2280.[CrossRef]
    [Google Scholar]
  27. Marrero, R. & Yasbin, R. E. ( 1988; ). Cloning of the Bacillus subtilis recE + gene and functional expression of recE + in B. subtilis. J Bacteriol 170, 335–344.
    [Google Scholar]
  28. Meinhardt, F., Bußkamp, M. & Wittchen, K. D. ( 1994; ). Cloning and sequencing of the leuC and nprM genes and a putative spoIV gene from Bacillus megaterium DSM319. Appl Microbiol Biotechnol 41, 344–351.[CrossRef]
    [Google Scholar]
  29. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Muth, G., Frese, D., Kleber, A. & Wohlleben, W. ( 1997; ). Mutational analysis of the Streptomyces lividans recA gene suggests that only mutants with residual activity remain viable. Mol Gen Genet 255, 420–428.[CrossRef]
    [Google Scholar]
  31. Nahrstedt, H. & Meinhardt, F. ( 2004; ). Structural and functional characterization of the Bacillus megaterium uvrBA locus and generation of UV-sensitive mutants. Appl Microbiol Biotechnol 65, 193–199.
    [Google Scholar]
  32. Norioka, N., Hsu, M. Y., Inouye, S. & Inouye, M. ( 1995; ). Two recA genes in Myxococcus xanthus. J Bacteriol 177, 4179–4182.
    [Google Scholar]
  33. Radman, M. ( 1975; ). SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A, 355–367.
    [Google Scholar]
  34. Raymond-Denise, A. & Guillen, N. ( 1991; ). Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol 173, 7084–7091.
    [Google Scholar]
  35. Roca, A. I. & Cox, M. M. ( 1990; ). The RecA protein: structure and function. Crit Rev Biochem Mol Biol 25, 415–456.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Sassanfar, M. & Roberts, J. W. ( 1990; ). Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212, 79–96.[CrossRef]
    [Google Scholar]
  38. Sciochetti, S. A., Blakely, G. W. & Piggot, P. J. ( 2001; ). Growth phase variation in cell and nucleoid morphology in a Bacillus subtilis recA mutant. J Bacteriol 183, 2963–2968.[CrossRef]
    [Google Scholar]
  39. Strey, J., Wittchen, K. D. & Meinhardt, F. ( 1999; ). Regulation of beta-galactosidase expression in Bacillus megaterium DSM319 by a XylS/AraC-type transcriptional activator. J Bacteriol 181, 3288–3292.
    [Google Scholar]
  40. Tapias, A., Fernandez, S., Alonso, J. C. & Barbé, J. ( 2002; ). Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 30, 1539–1546.[CrossRef]
    [Google Scholar]
  41. Van Sinderen, D., Luttinger, A., Kong, L., Dubnau, D., Venema, G. & Hamoen, L. ( 1995; ). comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15, 455–462.[CrossRef]
    [Google Scholar]
  42. Vary, P. S. ( 1994; ). Prime time for Bacillus megaterium. Microbiology 140, 1001–1013.[CrossRef]
    [Google Scholar]
  43. Vary, P. S. & Halsey, W. F. ( 1980; ). Host-range and partial characterization of several new bacteriophages for Bacillus megaterium QMB1551. J Gen Virol 51, 137–146.[CrossRef]
    [Google Scholar]
  44. Vierling, S., Weber, T., Wohlleben, W. & Muth, G. ( 2001; ). Evidence that an additional mutation is required to tolerate insertional inactivation of the Streptomyces lividans recA gene. J Bacteriol 183, 4374–4381.[CrossRef]
    [Google Scholar]
  45. Vorobjeva, I., Khemel, A. & Alföldi, I. ( 1980; ). Transformation of Bacillus megaterium protoplasts by plasmid DNA. FEMS Microbiol Lett 7, 261–263.[CrossRef]
    [Google Scholar]
  46. Walker, G. C. ( 1984; ). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48, 60–93.
    [Google Scholar]
  47. Winterling, K. W., Chafin, D., Hayes, J. J., Sun, J., Levine, A. S., Yasbin, R. E. & Woodgate, R. ( 1998; ). The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180, 2201–2211.
    [Google Scholar]
  48. Wittchen, K. D. & Meinhardt, F. ( 1995; ). Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol 42, 871–877.[CrossRef]
    [Google Scholar]
  49. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  50. Yasbin, R. E., Cheo, D. L. & Bayles, K. W. ( 1991; ). The SOB system of Bacillus subtilis: a global regulon involved in DNA repair and differentiation. Res Microbiol 142, 885–892.[CrossRef]
    [Google Scholar]
  51. Yasbin, R. E., Cheo, D. L. & Bayles, K. W. ( 1992; ). Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol Microbiol 6, 1263–1270.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27626-0
Loading
/content/journal/micro/10.1099/mic.0.27626-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error