1887

Abstract

is able to grow and survive at acidic pH, and exhibits intracellular pH homeostasis under these conditions. In this study, the authors have identified low proton permeability of the cytoplasmic membrane, and high cytoplasmic buffering capacity, as determinants of intrinsic acid resistance of . To identify genes encoding proteins involved in protecting cells from acid stress, a screening method was developed using the electrogenic protonophore carbonyl cyanide -chlorophenylhydrazone (CCCP). CCCP was used to suppress intrinsic acid resistance of . The screen involved exposing cells to pH 5·0 in the presence of CCCP, and survivors were rescued at various time intervals on solid medium at pH 7·5. Cells capable of responding to intracellular acidification (due to CCCP-induced proton equilibration) will survive longer under these conditions than acid-sensitive cells. From a total pool of 5000 transposon (Tn) insertion mutants screened, eight acid-sensitive mutants were isolated. These acid-sensitive mutants were unable to grow at pH 5·0 in the presence of 1–5 μM CCCP, a concentration not lethal to the wild-type strain mc155. The DNA flanking the site of Tn was identified using marker rescue in , and DNA sequencing to identify the disrupted locus. Acid-sensitive mutants of were disrupted in genes involved in phosphonate/phosphite assimilation, methionine biosynthesis, the PPE multigene family, xenobiotic-response regulation and lipid biosynthesis. Several of the acid-sensitive mutants were also defective in stationary-phase survival, suggesting that overlapping stress protection systems exist in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27624-0
2005-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510665.html?itemId=/content/journal/micro/10.1099/mic.0.27624-0&mimeType=html&fmt=ahah

References

  1. Cole S. T., Brosch R., Parkhill J. & 39 other authors. 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  2. Cook G. M., Keis S., Morgan H. W., von Ballmoos C., Matthey U., Kaim G., Dimroth P. 2003; Purification and biochemical characterization of the F1F0-ATP synthase from thermoalkaliphilicBacillus sp. strain TA2.A1. J Bacteriol185:4442–4449[CrossRef]
    [Google Scholar]
  3. Dannenberg A. M Jr. 1993; Immunopathogenesis of pulmonary tuberculosis. Hosp Pract Off Ed28:51–58
    [Google Scholar]
  4. Elferink M. G., de Wit J. G., Driessen A. J., Konings W. N. 1994; Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta 1193;247–254[CrossRef]
    [Google Scholar]
  5. Fisher M. A., Plikaytis B. B., Shinnick T. M. 2002; Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol184:4025–4032[CrossRef]
    [Google Scholar]
  6. Foster J. W., Bearson B. 1994; Acid-sensitive mutants of Salmonella typhimurium identified through a dinitrophenol lethal screening strategy. J Bacteriol176:2596–2602
    [Google Scholar]
  7. Foster J. W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol172:771–778
    [Google Scholar]
  8. Foster J. W., Hall H. K. 1991; Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol173:5129–5135
    [Google Scholar]
  9. Gage D. J., Neidhardt F. C. 1993a; Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol. J Bacteriol175:7105–7108
    [Google Scholar]
  10. Gage D. J., Neidhardt F. C. 1993b; Modulation of the heat shock response by one-carbon metabolism in Escherichia coli. J Bacteriol175:1961–1970
    [Google Scholar]
  11. Guilhot C., Otal I., Van Rompaey I., Martin C., Gicquel B. 1994; Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol176:535–539
    [Google Scholar]
  12. Iivanainen E., Martikainen P. J., Vaananen P., Katila M. L. 1999; Environmental factors affecting the occurrence of mycobacteria in brook sediments. J Appl Microbiol86:673–681[CrossRef]
    [Google Scholar]
  13. Krulwich T. A., Agus R., Schneier M., Guffanti A. A. 1985; Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol162:768–772
    [Google Scholar]
  14. Krulwich T. A., Quirk P. G., Guffanti A. A. 1990; Uncoupler-resistant mutants of bacteria. Microbiol Rev54:52–65
    [Google Scholar]
  15. Liu Y., Zhou J., Omelchenko M. V. & 12 other authors. 2003; Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A100:4191–4196[CrossRef]
    [Google Scholar]
  16. Maloney P. C. 1979; Membrane H+ conductance of Streptococcus lactis. J Bacteriol140:197–205
    [Google Scholar]
  17. Manganelli R., Provvedi R., Rodrigue S., Beaucher J., Gaudreau L., Smith I. 2004; Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol186:895–902[CrossRef]
    [Google Scholar]
  18. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem87:206–210[CrossRef]
    [Google Scholar]
  19. Martin C., Timm J., Rauzier J., Gomez-Lus R., Davies J., Gicquel B. 1990; Transposition of an antibiotic resistance element in mycobacteria. Nature345:739–743[CrossRef]
    [Google Scholar]
  20. O'Brien L. M., Gordon S. V., Roberts I. S., Andrew P. W. 1996; Response of Mycobacterium smegmatis to acid stress. FEMS Microbiol Lett139:11–17[CrossRef]
    [Google Scholar]
  21. Oh Y. K., Straubinger R. M. 1996; Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome–lysosome interaction. Infect Immun64:319–325
    [Google Scholar]
  22. Patterson J. H., McConville M. J., Haites R. E., Coppel R. L., Billman-Jacobe H. 2000; Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem275:24900–24906[CrossRef]
    [Google Scholar]
  23. Piddington D. L., Kashkouli A., Buchmeier N. A. 2000; Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. Infect Immun68:4518–4522[CrossRef]
    [Google Scholar]
  24. Prasada Reddy T. L., Suryanarayana Murthy P., Venkitasubramanian T. A. 1975; Respiratory chains of Mycobacterium smegmatis. Indian J Biochem Biophys12:255–259
    [Google Scholar]
  25. Quirk P. G., Guffanti A. A., Clejan S., Cheng J., Krulwich T. A. 1994; Isolation of Tn917 insertional mutants of Bacillus subtilis that are resistant to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Biochim Biophys Acta 1186;27–34[CrossRef]
    [Google Scholar]
  26. Rao M., Streur T. L., Aldwell F. E., Cook G. M. 2001; Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology147:1017–1024
    [Google Scholar]
  27. Riebeling V., Thauer R. K., Jungermann K. 1975; The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem55:445–453[CrossRef]
    [Google Scholar]
  28. Rius N., Loren J. G. 1998; Buffering capacity and membrane H+ conductance of neutrophilic and alkalophilic Gram-positive bacteria. Appl Environ Microbiol64:1344–1349
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Saviola B., Woolwine S. C., Bishai W. R. 2003; Isolation of acid-inducible genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect Immun71:1379–1388[CrossRef]
    [Google Scholar]
  31. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol4:1911–1919[CrossRef]
    [Google Scholar]
  32. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology148:3129–3138
    [Google Scholar]
  33. Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P. & 7 other authors. 1994; Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science263:678–681[CrossRef]
    [Google Scholar]
  34. Sung N., Collins M. T. 2003; Variation in resistance of Mycobacterium paratuberculosis to acid environments as a function of culture medium. Appl Environ Microbiol69:6833–6840[CrossRef]
    [Google Scholar]
  35. van de Vossenberg J. L., Ubbink-Kok T., Elferink M. G., Driessen A. J., Konings W. N. 1995; Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol18:925–932[CrossRef]
    [Google Scholar]
  36. van de Vossenberg J. L., Driessen A. J., da Costa M. S., Konings W. N. 1999; Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta 1419;97–104[CrossRef]
    [Google Scholar]
  37. Zhang Y., Scorpio A., Nikaido H., Sun Z. 1999; Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol181:2044–2049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27624-0
Loading
/content/journal/micro/10.1099/mic.0.27624-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error