1887

Abstract

Motile bacteria employ sophisticated chemotaxis signal transduction systems to transform environmental cues into corresponding behavioural responses. The proteins involved in this signalling pathway have been extensively studied on a molecular level in various model organisms, including enterobacteria and , and specific protein–protein interactions have been identified. The chemotaxis operon of spirochaetes encodes a novel chemotaxis protein, CheX, in addition to homologues to the central components of established chemotaxis systems. Interestingly, the closest functionally characterized homologue of CheX is CheC of the complex chemotaxis pathway. In this study, the yeast two-hybrid system was applied to investigate protein–protein interactions within the chemotaxis signalling pathway of , with special focus on CheX. CheX was found to interact with CheA and with itself. The other chemotaxis proteins exhibited interactions comparable to their homologues in known chemotaxis systems. Based on these findings, a model integrating CheX in the chemotaxis signal transduction pathway of is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27622-0
2005-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511801.html?itemId=/content/journal/micro/10.1099/mic.0.27622-0&mimeType=html&fmt=ahah

References

  1. Ames P., Parkinson J. S. 1994; Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 176:6340–6348
    [Google Scholar]
  2. Bilwes A. M., Alex L. A., Crane B. R., Simon M. I. 1999; Structure of CheA, a signal transducing histidine kinase. Cell 96:131–141 [CrossRef]
    [Google Scholar]
  3. Bischoff D. S., Bourret R. B., Kirsch M. L., Ordal G. W. 1993; Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:9256–9261 [CrossRef]
    [Google Scholar]
  4. Borkovich K. A., Kaplan N., Hess J. F., Simon M. I. 1989; Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc Natl Acad Sci U S A 86:1208–1212 [CrossRef]
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  6. Bren A., Eisenbach M. 2000; How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol 182:6865–6873 [CrossRef]
    [Google Scholar]
  7. Charon N. W., Goldstein S. F. 2002; Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73 [CrossRef]
    [Google Scholar]
  8. Cheng S. L., Siboo R., Quee T. C., Johnson J. L., Mayberry W. R., Chan E. C. 1985; Comparative study of six random oral spirochete isolates. Serological heterogeneity of Treponema denticola. J Periodontal Res 20:602–612 [CrossRef]
    [Google Scholar]
  9. Laboratories Clontech. 1996; MATCHMAKER Two-Hybrid System 2: Yeast transformation protocol. http://www.bdbiosciences.com/clontech/techinfo/manuals/PDF/PT1030–1.pdf
  10. Fields S., Song O. 1989; A novel genetic system to detect protein-protein interactions. Nature 340:245–246 [CrossRef]
    [Google Scholar]
  11. Fraser C. M., Casjens S., Huang W. M. 35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature 390:580–586 [CrossRef]
    [Google Scholar]
  12. Fraser C. M., Norris S. J., Weinstock G. M. 30 other authors 1998; Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  13. Gegner J. A., Dahlquist F. W. 1991; Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc Natl Acad Sci U S A 88:750–754 [CrossRef]
    [Google Scholar]
  14. Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. 1992; Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975–982 [CrossRef]
    [Google Scholar]
  15. Greene S. R., Stamm L. V. 1999; Molecular characterization of a chemotaxis operon in the oral spirochete, Treponema denticola . Gene 232:59–68 [CrossRef]
    [Google Scholar]
  16. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
    [Google Scholar]
  17. Josenhans C., Suerbaum S. 2002; The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614 [CrossRef]
    [Google Scholar]
  18. Kataoka M., Li H., Arakawa S., Kuramitsu H. 1997; Characterization of a methyl-accepting chemotaxis protein gene, dmcA, from the oral spirochete Treponema denticola . Infect Immun 65:4011–4016
    [Google Scholar]
  19. Kirby J. R., Kristich C. J., Saulmon M. M., Zimmer M. A., Garrity L. F., Zhulin I. B., Ordal G. W. 2001; CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis. Mol Microbiol 42:573–585
    [Google Scholar]
  20. Li H., Ruby J., Charon N., Kuramitsu H. 1996; Gene inactivation in the oral spirochete Treponema denticola: construction of an flgE mutant. J Bacteriol 178:3664–3667
    [Google Scholar]
  21. Li C. Y., Tsai J. P., Han Y. W., Yang Z., Wolinsky L. E., Kuramitsu H., Shi W. 1998; Chemotaxis and the cheA mutant of Treponema denticola . J Dent Res 77:228
    [Google Scholar]
  22. Li H., Arakawa S., Deng Q. D., Kuramitsu H. 1999; Characterization of a novel methyl-accepting chemotaxis gene, dmcB, from the oral spirochete Treponema denticola . Infect Immun 67:694–699
    [Google Scholar]
  23. Limberger R. J., Slivienski L. L., Izard J., Samsonoff W. A. 1999; Insertional inactivation of Treponema denticola tap1 results in a nonmotile mutant with elongated flagellar hooks. J Bacteriol 181:3743–3750
    [Google Scholar]
  24. Liu J. D., Parkinson J. S. 1989; Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci U S A 86:8703–8707 [CrossRef]
    [Google Scholar]
  25. Lux R., Shi W. 2004; Chemotaxis-guided movements in bacteria. Crit Rev Oral Biol Med 15:207–220 [CrossRef]
    [Google Scholar]
  26. Lux R., Moter A., Shi W. 2000; Chemotaxis in pathogenic spirochetes: directed movement toward targeting tissues?. J Mol Microbiol Biotechnol 2:355–364
    [Google Scholar]
  27. Lux R., Miller J. N., Park N. H., Shi W. 2001; Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola . Infect Immun 69:6276–6283 [CrossRef]
    [Google Scholar]
  28. Lux R., Sim J. H., Tsai J. P., Shi W. 2002; Construction and characterization of a cheA mutant of Treponema denticola . J Bacteriol 184:3130–3134 [CrossRef]
    [Google Scholar]
  29. Marykwas D. L., Schmidt S. A., Berg H. C. 1996; Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in Yeast. J Mol Biol 256:564–576 [CrossRef]
    [Google Scholar]
  30. Mathews M. A., Tang H. L., Blair D. F. 1998; Domain analysis of the FliM protein of Escherichia coli . J Bacteriol 180:5580–5590
    [Google Scholar]
  31. Mayo J. A., Blake A., Donze D. 1990; Chemotaxis by Treponema denticola . J Dent Res 69:382
    [Google Scholar]
  32. McEvoy M. M., Bren A., Eisenbach M., Dahlquist F. W. 1999; Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein FliM. J Mol Biol 289:1423–1433 [CrossRef]
    [Google Scholar]
  33. McNally D. F., Matsumura P. 1991; Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. Proc Natl Acad Sci U S A 88:6269–6273 [CrossRef]
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Nakayama M., Kikuno R., Ohara O. 2002; Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 12:1773–1784 [CrossRef]
    [Google Scholar]
  36. Ohta K., Makinen K. K., Loesche W. J. 1986; Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun 53:213–220
    [Google Scholar]
  37. Park S. Y., Chao X., Gonzalez-Bonet G., Beel B. D., Bilwes A. M., Crane B. R. 2004; Structure and function of an unusual family of protein phosphatases; the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16:563–574
    [Google Scholar]
  38. Rosario M. M., Ordal G. W. 1996; CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol Microbiol 21:511–518 [CrossRef]
    [Google Scholar]
  39. Rosario M. M., Kirby J. R., Bochar D. A., Ordal G. W. 1995; Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34:3823–3831 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Russell D. W., Sambrook J. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schuster S. C., Swanson R. V., Alex L. A., Bourret R. B., Simon M. I. 1993; Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature 365:343–347 [CrossRef]
    [Google Scholar]
  42. Sela M. N. 2001; Role of Treponema denticola in periodontal diseases. Crit Rev Oral Biol Med 12:399–413 [CrossRef]
    [Google Scholar]
  43. Seshadri R., Myers G. S., Tettelin H. & 36 other authors; 2004; Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101:5646–5651 [CrossRef]
    [Google Scholar]
  44. Swanson R. V., Lowry D. F., Matsumura P., McEvoy M. M., Simon M. I., Dahlquist F. W. 1995; Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface. Nat Struct Biol 2:906–910 [CrossRef]
    [Google Scholar]
  45. Szurmant H., Muff T. J., Ordal G. W. 2004; Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792 [CrossRef]
    [Google Scholar]
  46. Szurmant H., Ordal G. W. 2004; Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319 [CrossRef]
    [Google Scholar]
  47. Uetz P., Giot L., Cagney G. & 17 other authors; 2000; A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627 [CrossRef]
    [Google Scholar]
  48. Umemoto T., Jinno T., Taiji Y., Ogawa T. 2001; Chemotaxis of oral treponemes toward sera and albumin of rabbit. Microbiol Immunol 45:571–577 [CrossRef]
    [Google Scholar]
  49. Wang H., Matsumura P. 1996; Characterization of the CheAS/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol Microbiol 19:695–703 [CrossRef]
    [Google Scholar]
  50. Welch M., Oosawa K., Aizawa S., Eisenbach M. 1993; Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 90:8787–8791 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27622-0
Loading
/content/journal/micro/10.1099/mic.0.27622-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error