1887

Abstract

is a Gram-negative bacterium that lives at pH 2 in high concentrations of soluble ferrous and ferric iron, making it an interesting model for understanding the biological mechanisms of bacterial iron uptake and homeostasis in extremely acid conditions. A candidate (erric ptake egulator) gene was identified in the ATCC 23270 genome. Fur has significant sequence similarity, including conservation of functional motifs, to known Fur orthologues and exhibits cross-reactivity to Fur antiserum. The gene is able to complement deficiency in in an iron-responsive manner. Fur is also able to bind specifically to Fur regulatory regions (Fur boxes) and to a candidate Fur box from , as judged by electrophoretic mobility shift assays. Fur represses gene expression from Fur-responsive promoters and when expressed at high protein levels. However, it increases gene expression from these promoters at low concentrations and possibly from other Fur-regulated promoters involved in iron-responsive oxidative stress responses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27581-0
2005-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512005.html?itemId=/content/journal/micro/10.1099/mic.0.27581-0&mimeType=html&fmt=ahah

References

  1. Adrait, A., Jacquamet, L., Le Pape, L., Gonzalez de Peredo, A., Aberdam, D., Hazemann, J. L., Latour, J. M. & Michaud-Soret, I. ( 1999; ). Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein from Escherichia coli. Biochemistry 38, 6248–6260.[CrossRef]
    [Google Scholar]
  2. Aiba, H., Adhya, S. & de Crombrugghe, B. ( 1981; ). Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256, 11905–11910.
    [Google Scholar]
  3. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  4. Baichoo, N., Wang, T., Ye, R. & Helmann, J. D. ( 2002; ). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45, 1613–1629.[CrossRef]
    [Google Scholar]
  5. Barton, H. A., Johnson, Z., Cox, C. D., Vasil, A. I. & Vasil, M. L. ( 1996; ). Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21, 1001–1017.[CrossRef]
    [Google Scholar]
  6. Brasseur, G., Levican, G., Bonnefoy, V., Holmes, D., Jedlicki, E. & Lemesle-Meunier, D. ( 2004; ). Apparent redundancy of electron transfer pathways via bc(1) complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656, 114–126.[CrossRef]
    [Google Scholar]
  7. Braun, V. & Killmann, H. ( 1999; ). Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24, 104–109.[CrossRef]
    [Google Scholar]
  8. Bsat, N. & Helmann, J. D. ( 1999; ). Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181, 4299–4307.
    [Google Scholar]
  9. Coy, M., Doyle, C., Besser, J. & Neilands, J. B. ( 1994; ). Site-directed mutagenesis of the ferric uptake regulation gene of Escherichia coli. Biometals 7, 292–298.
    [Google Scholar]
  10. de Lorenzo, V., Giovannini, F., Herrero, M. & Neilands, J. B. ( 1988; ). Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol 203, 875–884.[CrossRef]
    [Google Scholar]
  11. Delany, I., Spohn, G., Rappuoli, R. & Scarlato, V. ( 2001; ). The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42, 1297–1309.
    [Google Scholar]
  12. Delany, I., Spohn, G., Pacheco, A. B., Ieva, R., Alaimo, C., Rappuoli, R. & Scarlato, V. ( 2002; ). Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Mol Microbiol 46, 1107–1122.[CrossRef]
    [Google Scholar]
  13. Delany, I., Spohn, G., Rappuoli, R. & Scarlato, V. ( 2003; ). An anti-repression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Mol Microbiol 50, 1329–1338.[CrossRef]
    [Google Scholar]
  14. Delany, I., Rappuoli, R. & Scarlato, V. ( 2004; ). Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52, 1081–1090.[CrossRef]
    [Google Scholar]
  15. de Smith, M. H. & van Duin, J. ( 1990; ). Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 87, 7668–7672.[CrossRef]
    [Google Scholar]
  16. Escolar, L., Pérez-Martín, J. & de Lorenzo, V. ( 1998; ). Coordinated repression in vitro of the divergent fepAfes promoters of Escherichia coli by the iron uptake regulation (Fur) protein. J Bacteriol 180, 2579–2582.
    [Google Scholar]
  17. Escolar, L., Peréz-Martín, J. & de Lorenzo, V. ( 1999; ). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181, 6223–6229.
    [Google Scholar]
  18. Escolar, L., Peréz-Martín, J. & de Lorenzo, V. ( 2000; ). Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli. J Biol Chem 275, 24709–24714.[CrossRef]
    [Google Scholar]
  19. Gonzalez de Perédo, A., Saint-Pierre, C., Latour, J. M., Michaud-Soret, I. & Forest, E. ( 2001; ). Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. J Mol Biol 310, 83–91.[CrossRef]
    [Google Scholar]
  20. Gross, G., Mielke, C., Hollatz, I., Blocker, H. & Frank, R. ( 1990; ). RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-beta genes in Escherichia coli. J Biol Chem 265, 17627–17636.
    [Google Scholar]
  21. Guacucano, M., Levican, G., Holmes, D. S. & Jedlicki, E. ( 2000; ). An RT-PCR artifact in the characterization of bacterial operons. EJB Electronic Journal of Biotechnology 3. http://www.ejbiotechnology.info/content/vol3/issue3/full/5/
    [Google Scholar]
  22. Hall, H. K. & Foster, J. W. ( 1996; ). The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178, 5683–5691.
    [Google Scholar]
  23. Hantke, K. ( 1987; ). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: Fur not only affects iron metabolism. Mol Gen Genet 210, 135–139.[CrossRef]
    [Google Scholar]
  24. Hantke, K. ( 2001; ). Iron and metal regulation in bacteria. Curr Opin Microbiol 4, 172–177.[CrossRef]
    [Google Scholar]
  25. Hantke, K. & Braun, V. ( 2000; ). The art of keeping low and high iron concentrations in balance. In Bacterial Stress Responses, pp. 275–288. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  26. Hartz, D., McPheeters, D. S. & Gold, L. ( 1991; ). Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol 218, 83–97.[CrossRef]
    [Google Scholar]
  27. Hernández, J. A., Bes, M. T., Fillat, M. F., Neira, J. L. & Peleato, M. L. ( 2002; ). Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state. Biochem J 366, 315–322.
    [Google Scholar]
  28. Holm, L., Sander, C., Ruterjans, H., Schnarr, M., Fogh, R., Boelens, R. & Kaptein, R. ( 1994; ). LexA repressor and iron uptake regulator from Escherichia coli: new members of the CAP-like DNA binding domain superfamily. Protein Eng 7, 1449–1453.[CrossRef]
    [Google Scholar]
  29. Jacquamet, L., Aberdam, D., Adrait, A., Hazemann, J. L., Latour, J. M. & Michaud-Soret, I. ( 1998; ). X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37, 2564–2571.[CrossRef]
    [Google Scholar]
  30. Kehres, D. G., Zaharik, M. L., Finlay, B. B. & Maguire, M. E. ( 2000; ). The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36, 1085–1100.[CrossRef]
    [Google Scholar]
  31. Kehres, D. G., Janakiraman, A., Slauch, J. M. & Maguire, M. E. ( 2002; ). Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2 Fe2+, and Mn2+. J Bacteriol 184, 3151–3158.[CrossRef]
    [Google Scholar]
  32. Liu, Z., Guiliani, N., Appia-Ayme, C., Borne, F., Ratouchniak, J. & Bonnefoy, V. ( 2000; ). Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J Bacteriol 182, 2269–2276.[CrossRef]
    [Google Scholar]
  33. Loprasert, S., Sallabhan, R., Atichartpongkul, S. & Mongkolsuk, S. ( 1999; ). Characterization of a ferric uptake regulator (fur) gene from Xanthomonas campestris pv. phaseoli with unusual primary structure, genome organization, and expression patterns. Gene 239, 251–258.[CrossRef]
    [Google Scholar]
  34. Lowe, C. A., Asghar, A. H., Shalom, G., Shaw, J. G. & Thomas, M. S. ( 2001; ). The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. Microbiology 147, 1303–1314.
    [Google Scholar]
  35. Makui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P. & Cellier, M. F. ( 2000; ). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35, 1065–1078.[CrossRef]
    [Google Scholar]
  36. Massé, E. & Gottesman, S. ( 2002; ). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  37. McHugh, J. P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D. A., Poole, R. K., Cooper, C. E. & Andrews, S. C. ( 2003; ). Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278, 29478–29486.[CrossRef]
    [Google Scholar]
  38. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Ochsner, U. A., Vasil, A. I., Johnson, Z. & Vasil, M. L. ( 1999; ). Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J Bacteriol 181, 1099–1109.
    [Google Scholar]
  40. Ochsner, U. A., Wilderman, P. J., Vasil, A. I. & Vasil, M. L. ( 2002; ). GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45, 1277–1287.[CrossRef]
    [Google Scholar]
  41. Pohl, E., Haller, J. C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E. & Vasil, M. L. ( 2003; ). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47, 903–915.[CrossRef]
    [Google Scholar]
  42. Qi, Z., Hamza, I. & O'Brian, M. ( 1999; ). Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci U S A 96, 13056–13061.[CrossRef]
    [Google Scholar]
  43. Rawlings, D. E. ( 2002; ). Heavy metal mining using microbes. Annu Rev Microbiol 56, 65–91.[CrossRef]
    [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Stojiljkovic, I., Baumler, A. J. & Hantke, K. ( 1994; ). Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236, 531–545.[CrossRef]
    [Google Scholar]
  46. Thomas, C. E. & Sparling, P. F. ( 1994; ). Identification and cloning of a Fur homologue from Neisseria meningitidis. Mol Microbiol 11, 725–737.[CrossRef]
    [Google Scholar]
  47. Thompson, D. K., Beliaev, A. S., Giometti, C. S. & 9 other authors ( 2002; ). Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68, 881–892.[CrossRef]
    [Google Scholar]
  48. Touati, D. ( 2000; ). Iron and oxidative stress in bacteria. Arch Biochem Biophys 373, 1–6.[CrossRef]
    [Google Scholar]
  49. Touati, D., Jacques, M., Tardat, B., Bouchard, L. & Despied, S. ( 1995; ). Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177, 2305–2314.
    [Google Scholar]
  50. Vasil, M. L. & Ochsner, U. A. ( 1999; ). The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34, 399–413.[CrossRef]
    [Google Scholar]
  51. Watnick, P. I., Eto, T., Takahashi, H. & Calderwood, S. B. ( 1997; ). Purification of Vibrio cholerae Fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J Bacteriol 179, 243–247.
    [Google Scholar]
  52. Yarzábal, A., Appia-Ayme, C., Ratouchniak, J. & Bonnefoy, V. ( 2004; ). Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150, 2113–2123.[CrossRef]
    [Google Scholar]
  53. Zheng, M., Wang, X., Doan, B., Lewis, K. A., Schneider, T. D. & Storz, G. ( 2001; ). Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J Bacteriol 183, 4571–4579.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27581-0
Loading
/content/journal/micro/10.1099/mic.0.27581-0
Loading

Data & Media loading...

Supplements

[PDF file](23 KB)

PDF

FurAF from ATCC23270. Comparison of the hypothetical amino acid sequence of FurAF of with known or hypothetical Fur orthologues from a variety of organisms [PDF file](96 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error