1887

Abstract

The ability to use sulphite as a respiratory electron donor is usually associated with free-living chemolithotrophic sulphur-oxidizing bacteria. However, this paper shows that the chemoheterotrophic human pathogen has the ability to respire sulphite, with oxygen uptake rates of 23±8 and 28±15 nmol O min (mg cell protein) after the addition of 0·5 mM sodium sulphite or metabisulphite, respectively, to intact cells. The NCTC 11168 and genes encode a monohaem cytochrome and molybdopterin oxidoreductase, respectively, homologous to the sulphite : cytochrome oxidoreductase (SOR) of . Western blots of periplasm probed with a SorA antibody demonstrated cross-reaction of a 45 kDa band, consistent with the size of Cj0005. The gene was inactivated by insertion of a kanamycin-resistance cassette. The resulting mutant showed wild-type rates of formate-dependent respiration but was unable to respire with sulphite or metabisulphite as electron donors. 2-Heptyl-4-hydroxyquinoline--oxide (HQNO), a cytochrome complex inhibitor, did not affect sulphite respiration at concentrations up to 25 μM, whereas formate respiration (which occurs partly via a dependent route) was inhibited 50 %, thus suggesting that electrons from sulphite enter the respiratory chain after the complex at the level of cytochrome . Periplasmic extracts of wild-type 11168 showed a symmetrical absorption peak at 552 nm after the addition of sulphite, demonstrating the reduction of cytochrome . No cytochrome reduction was observed after addition of sulphite to periplasmic extracts of the mutant. A fractionation study confirmed that the majority of the SOR activity is located in the periplasm in , and this activity was partially purified by ion-exchange chromatography. The presence of a sulphite respiration system in is another example of the surprising diversity of the electron-transport chain in this small-genome pathogen. Sulphite respiration may be of importance for survival in environmental microaerobic niches and some foods, and may also provide a detoxification mechanism for this normally growth-inhibitory compound.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27573-0
2005-01-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510233.html?itemId=/content/journal/micro/10.1099/mic.0.27573-0&mimeType=html&fmt=ahah

References

  1. Berks, B. C., Palmer, T. & Sargent, F. ( 2003; ). The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47, 187–254.
    [Google Scholar]
  2. Bolton, F. J., Coates, D. & Hutchinson, D. N. ( 1984; ). The ability of Campylobacter media supplements to neutralize photochemically induced toxicity and hydrogen peroxide. J Appl Bacteriol 56, 151–157.[CrossRef]
    [Google Scholar]
  3. Friedman, C. R., Neiman, J., Wegener, H. C. & Tauxe, R. V. ( 2000; ). Epidemiology of Campylobacter jejuni in the United States and other industrialized nations. In Campylobacter, 2nd edn, pp. 121–138. Edited by I. Nachamkin & M. J. Blaser. Washington DC: American Society for Microbiology.
  4. Friedrich, C. G. ( 1998; ). Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39, 235–289.
    [Google Scholar]
  5. Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ( 1999; ). ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305–308.[CrossRef]
    [Google Scholar]
  6. Hille, R. ( 1996; ). The mononuclear molybdenum enzymes. Chem Rev 96, 2757–2816.[CrossRef]
    [Google Scholar]
  7. Hoffman, P. S. & Goodman, T. G. ( 1982; ). Respiratory physiology and energy conservation efficiency of Campylobacter jejuni. J Bacteriol 150, 319–326.
    [Google Scholar]
  8. Hughes, N., Chalk, P., Clayton, C. L. & Kelly, D. J. ( 1998; ). Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate and 2-oxoglutarate : acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol 180, 1119–1128.
    [Google Scholar]
  9. Jiang, X. & Doyle, M. P. ( 2000; ). Growth supplements for Helicobacter pylori. J Clin Microbiol 38, 1984–1987.
    [Google Scholar]
  10. Jones, C. W. & Poole, R. K. ( 1985; ). The analysis of cytochromes. Methods Microbiol 18, 285–323.
    [Google Scholar]
  11. Kappler, U. & Dahl, C. ( 2001; ). Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203, 1–9.[CrossRef]
    [Google Scholar]
  12. Kappler, U., Bennett, B., Rethmeier, J., Schwarz, G., Deutzmann, R., McEwan, A. G. & Dahl, C. ( 2000; ). Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. J Biol Chem 275, 13202–13212.[CrossRef]
    [Google Scholar]
  13. Kappler, U., Friedrich, C. G., Trüper, H. G. & Dahl, C. ( 2001; ). Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Arch Microbiol 175, 102–111.[CrossRef]
    [Google Scholar]
  14. Kelly, D. J. ( 2001; ). The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. J Appl Microbiol 90, 16S–24S.[CrossRef]
    [Google Scholar]
  15. Kisker, C., Schindelin, H. & Rees, D. C. ( 1997; ). Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66, 233–267.[CrossRef]
    [Google Scholar]
  16. Kisker, C., Schindelin, H., Baas, D., Rétey, J., Meckenstock, R. U. & Kroneck, P. M. H. ( 1999; ). A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiol Rev 22, 503–521.
    [Google Scholar]
  17. Laemmli, U. K. ( 1970; ). Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  18. Leyland, M. L. & Kelly, D. J. ( 1991; ). Purification and characterisation of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur J Biochem 202, 85–93.[CrossRef]
    [Google Scholar]
  19. Loschi, L., Brokx, S. J., Hills, T. L., Zhang, G., Bertero, M. G., Lovering, A. L., Weiner, J. H. & Strynadka, N. C. J. ( 2004; ). Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem (in press). doi:10.1074/jbc.M408876200
    [Google Scholar]
  20. Mitsuhashi, H., Nojima, Y., Tanaka, T., Ueki, K., Maezawa, A., Yano, S. & Naruse, T. ( 1998; ). Sulfite is released by human neutrophils in response to stimulation with lipopolysaccharide. J Leukoc Biol 64, 595–599.
    [Google Scholar]
  21. Myers, J. D. & Kelly, D. J. ( 2005; ). Respiratory electron transport in Helicobacter and Campylobacter. In Respiration in Archaea and Bacteria, vol 2: Diversity of Prokaryotic Respiratory Systems. Edited by D. Zannoni. Dordrecht: Kluwer (in press).
  22. Nachamkin, I., Allos, B. M. & Ho, T. W. ( 2000; ). Campylobacter jejuni infection and the association with Guillain–Barré syndrome. In Campylobacter, 2nd edn, pp. 155–175. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  23. Page, R. D. M. ( 1996; ). Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  24. Parkhill, J., Wren, B. W., Mungall, K. & 17 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 43, 665–668.
    [Google Scholar]
  25. Pickett, C. L. ( 2000; ). Campylobacter toxins and their role in pathogenesis. In Campylobacter, 2nd edn, pp. 179–190. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  26. Sargent, F., Bogsch, E. G., Stanley, N. R., Wexler, M., Robinson, C., Berks, B. C. & Palmer, T. ( 1998; ). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17, 3640–3650.[CrossRef]
    [Google Scholar]
  27. Sellars, M. J., Hall, S. J. & Kelly, D. J. ( 2002; ). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide or dimethylsulfoxide requires oxygen. J Bacteriol 184, 4187–4196.[CrossRef]
    [Google Scholar]
  28. Skirrow, M. B. & Blaser, M. J. ( 2000; ). Clinical aspects of Campylobacter infection. In Campylobacter, 2nd edn, pp. 69–88. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  29. Sorokin, D. Y. ( 1995; ). Sulfitobacter pontaiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiya) 64, 295–305.
    [Google Scholar]
  30. Thompson, J. D., Gibson, T. J., Plewiniak, F., Jeanmougin, F. & Higgins, D. A. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  31. van Vliet, A. H., Wooldridge, K. G. & Ketley, J. M. ( 1998; ). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180, 5291–5298.
    [Google Scholar]
  32. Wood, P. M. ( 1988; ). Chemolithotrophy. In Bacterial Energy Transduction, pp. 183–230. Edited by C. Anthony. London: Academic Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27573-0
Loading
/content/journal/micro/10.1099/mic.0.27573-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error