1887

Abstract

infects a broad range of insects by direct penetration of the host cuticle. To explore the molecular basis of this process, its gene expression responses to diverse insect cuticles were surveyed, using cDNA microarrays constructed from an expressed sequence tag (EST) clone collection of 837 genes. During growth in culture containing caterpillar cuticle (), upregulated 273 genes, representing a broad spectrum of biological functions, including cuticle-degradation (e.g. proteases), amino acid/peptide transport and transcription regulation. There were also many genes of unknown function. The 287 down-regulated genes were also distinctive, and included a large set of ribosomal protein genes. The response to nutrient deprivation partially overlapped with the response to cuticle, but unique expression patterns in response to cuticles from another caterpillar (), a cockroach () and a beetle () indicate that the pathogen can respond in a precise and specialized way to specific conditions. The subtilisins provided an example of a large gene family in which differences in regulation could potentially allow virulence determinants to target different hosts and stages of infection. Comparisons between and published data on and identified differences in the regulation of glycolysis-related genes and citric acid cycle/oxidative phosphorylation functions. In particular, has multiple forms of several catabolic enzymes that are differentially regulated in response to sugar levels. These may increase the flexibility of as it responds to nutritional changes in its environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27560-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510361.html?itemId=/content/journal/micro/10.1099/mic.0.27560-0&mimeType=html&fmt=ahah

References

  1. Bagga S., Hu G., Screen S. E., St Leger R. J. 2004; Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae . Gene 324:159–169 [CrossRef]
    [Google Scholar]
  2. Brown P. O., Botstein D. 1999; Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37 [CrossRef]
    [Google Scholar]
  3. Caracuel Z., Roncero M. I., Espeso E. A., Gonzalez-Verdejo C. I., Garcia-Maceira F. I., Di Pietro A. 2003; The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum . Mol Microbiol 48:765–779 [CrossRef]
    [Google Scholar]
  4. Chambergo F. S., Bonaccorsi E. D., Ferreira A. J., Ramos A. S., Ferreira J. R. J. J. R., Abrahao-Neto J., Farah J. P., El-Dorry H. 2002; Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988 [CrossRef]
    [Google Scholar]
  5. Davis D., Wilson R. B., Mitchell A. P. 2000; RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978 [CrossRef]
    [Google Scholar]
  6. DeRisi J. L., Iyer V. R., Brown P. O. 1997; Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686 [CrossRef]
    [Google Scholar]
  7. Donzelli B. G., Lorito M., Scala F., Harman G. E. 2001; Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase fromTrichoderma atroviride(T. harzianum). Gene 277:199–208 [CrossRef]
    [Google Scholar]
  8. Doseff A. I., Arndt K. T. 1995; LAS1 is an essential nuclear protein involved in cell morphogenesis and cell surface growth. Genetics 141:857–871
    [Google Scholar]
  9. Dysvik B., Jonassen I. 2001; J-Express: exploring gene expression data using Java. Bioinformatics 17:369–370 [CrossRef]
    [Google Scholar]
  10. Ferea T. L., Botstein D., Brown P. O., Rosenzweig R. F. 1999; Systematic changes in gene expression pattern following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96:9721–9726 [CrossRef]
    [Google Scholar]
  11. Freimoser F. M., Screen S., Bagga S., Hu G., St Leger R. J. 2003; Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247 [CrossRef]
    [Google Scholar]
  12. Goffeau A., Barrell B. G., Bussey H. & 13 other authors; 1996; Life with 6000 genes. Science 274:563–567
    [Google Scholar]
  13. Grundschober A., Tuor U., Aebi M. 1998; In vitro cultivation and sporulation of Neozygites parvispora (Zygomycetes: Entomophthorales. Syst Appl Microbiol 21:461–469 [CrossRef]
    [Google Scholar]
  14. Holtzman D. A., Yang S., Drubin D. G. 1993; Synthetic–lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae . J Cell Biol 122:635–644 [CrossRef]
    [Google Scholar]
  15. Hu G., St Leger R. J. 2002; Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387 [CrossRef]
    [Google Scholar]
  16. Hu G., St Leger R. J. 2004; A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evolution Biol 17:1204–1214 [CrossRef]
    [Google Scholar]
  17. Joshi L., St Leger R. J. 1999; Cloning, expression, and substrate specificity of MeCPA, a zinc carboxypeptidase that is secreted into infected tissues by the fungal entomopathogen Metarhizium anisopliae . J Biol Chem 274:9803–9811 [CrossRef]
    [Google Scholar]
  18. Joshi L., St Leger R. J., Roberts D. W. 1997; Isolation of a cDNA encoding a novel subtilisin-like protease (Pr1B) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCR. Gene 197:1–8 [CrossRef]
    [Google Scholar]
  19. Martinez-Blanco H., Orejas M., Reglero A., Luengo J. M., Penalva M. A. 1993; Characterisation of the gene encoding acetyl-CoA synthetase in Penicillium chrysogenum: conservation of intron position in plectomycetes. Gene 130:265–270 [CrossRef]
    [Google Scholar]
  20. Parsley T. B., Chen B., Geletka M., Nuss D. L. 2002; Differential modulation of cellular signaling pathways by mild and severe hypovirus strains. Eukaryot Cell 1:401–413 [CrossRef]
    [Google Scholar]
  21. Paterson I. C., Charnley A. K., Cooper R. M., Clarkson J. M. 1994; Partial characterization of specific inducers of a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Microbiology 140:3153–3159 [CrossRef]
    [Google Scholar]
  22. Samuels K. D. Z., Pinnock D. E., Allsopp P. G. 1989; The potential of Metarhizium anisopliae(Metschnikoff) Sorokin (Deutermycotina, Hyphomycetes) as a biological control-agent of Inopus rubriceps (Macquart) (Diptera, Stratiomyidae). J Aust Entomol Soc 28:69–74 [CrossRef]
    [Google Scholar]
  23. Screen S. E., St Leger R. J. 2000; Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275:6689–6694 [CrossRef]
    [Google Scholar]
  24. St Leger R. J. 1993; Biology and mechanisms of insect cuticle invasion by deuteromycete fungal pathogens. In Parasites and Pathogens of Insects pp 211–229 Edited by Beckage N. C., Thompson S. N., Federici B. A. San Diego, CA: Academic Press;
    [Google Scholar]
  25. St Leger R. J., Charnley A. K., Cooper R. M. 1986a; Cuticle-degrading enzymes of entomopathogenic fungi: mechanisms of interaction between pathogen enzymes and insect cuticle. J Invertebr Pathol 47:295–302 [CrossRef]
    [Google Scholar]
  26. St Leger R. J., Charnley A. K., Cooper R. M. 1986b; Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J Invertebr Pathol 48:85–95 [CrossRef]
    [Google Scholar]
  27. St Leger R. J., Charnley A. K., Cooper R. M. 1987; Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 253:221–232 [CrossRef]
    [Google Scholar]
  28. St Leger R. J., May B., Allee L. L., Frank D. C., Staples R. C., Roberts D. W. 1992; Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae . J Invertebr Pathol 60:89–101 [CrossRef]
    [Google Scholar]
  29. St Leger R. J., Bidochka M. J., Roberts D. W. 1994; Isoforms of the cuticle-degrading Pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae . Arch Biochem Biophys 313:1–7 [CrossRef]
    [Google Scholar]
  30. St Leger R. J., Joshi L., Bidochka M. J., Rizzo N. W., Roberts D. W. 1996; Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62:1257–1264
    [Google Scholar]
  31. St Leger R. J., Joshi L., Roberts D. 1998; Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae . Appl Environ Microbiol 64:709–713
    [Google Scholar]
  32. Warner J. R. 1999; The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440 [CrossRef]
    [Google Scholar]
  33. Watanabe R., Ohishi K., Maeda Y., Nakamura N., Kinoshita T. 1999; Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 339:185–192 [CrossRef]
    [Google Scholar]
  34. Yuen T., Wurmbach E., Pfeffer R. L., Ebersole B. J., Sealfon S. C. 2002; Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30:48 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27560-0
Loading
/content/journal/micro/10.1099/mic.0.27560-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error