Siderophore and haem iron use by Free

Abstract

The ability of the parasitic flagellate to use various iron sources for its physiological requirements was studied. The siderophores ferrioxamine B, ferrichrome, triacetylfusarinine, coprogen, enterobactin and pyoverdine sustained growth of the cells under iron-limited conditions, and siderophore iron was incorporated into the major iron protein of , ferredoxin. The kinetics of siderophore uptake by the cells indicated that a non-saturable transport is involved, unlike the uptake of a ferrous salt. Siderophore uptake by the cells did not involve extracellular reductive dissociation of the ferric chelates, although cells had some ferrireductase activity on ferric citrate. Fluorescent analogues of siderophores were used to show that the siderophores taken up by the cells were in small intracellular vesicles. The fluorescence emission maximum of pyoverdine in these intracellular vesicles shifted from 460 nm to 530 nm, indicating a very acidic environment. The results suggest that a wide range of chemically unrelated siderophores can be taken up non-specifically and efficiently used by ; the mechanism involved may be pinocytosis and removal of the iron from the siderophores in acidic intracellular vesicles. Haemin also sustained the growth of cells under iron-limited conditions. The use of haemin iron by the cells probably involves haem oxygenase, since traces of biliverdin were found in the medium when haemin was the iron source. The iron uptake and ferrireductase activities of the cells do not seem to be regulated by the amounts of iron and copper in the growth medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27544-0
2004-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/12/mic1503979.html?itemId=/content/journal/micro/10.1099/mic.0.27544-0&mimeType=html&fmt=ahah

References

  1. Alderete, J. F., Nguyen, J., Mundodi, V. & Lehker, M. W.(2004). Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microb Pathog 36, 263–271.[CrossRef] [Google Scholar]
  2. Ardon, O., Nudelman, R., Caris, C., Libman, J., Shanzer, A., Chen, Y. & Hadar, Y.(1998). Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180, 2021–2026. [Google Scholar]
  3. Ardon, O., Bussey, H., Philpott, C., Ward, D. M., Davis-Kaplan, S., Verroneau, S., Jiang, B. & Kaplan, J.(2001). Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem 276, 43049–43055.[CrossRef] [Google Scholar]
  4. Berner, I., Yakirevitch, P., Libman, J., Shanzer, A. & Winkelmann, G.(1991). Chiral linear hydroxamates as biomimetic analogues of ferrioxamine and their use in probing siderophore-receptor specificity in bacteria and fungi. Biol Metals 4, 186–191.[CrossRef] [Google Scholar]
  5. Braun, V.(2001). Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291, 67–79.[CrossRef] [Google Scholar]
  6. Buchler, J. W.(1975). Static coordination chemistry of metalloporphyrins. In Porphyrins and Metalloporphyrins, pp. 157–224. Edited by K. M. Smith. Amsterdam: Elsevier.
  7. Cerkasov, J., Cerkasovova, A., Kulda, J. & Vilhelmova, D.(1978). Respiration of hydrogenosomes of Tritrichomonas foetus. I. ADP-dependent oxidation of malate and pyruvate. J Biol Chem 253, 1207–1214. [Google Scholar]
  8. Crowley, D. E., Reid, C. P. P. & Szaniszlo, P. J.(1987). Microbial siderophores as iron sources for plants. In Iron Transport in Microbes, Plants and Animals, pp. 375–386. Edited by G. Winkelmann, D. van der Helm & J. B. Neilands. Weinheim & New York: VCH.
  9. Diamond, L. S.(1957). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43, 488–490. [Google Scholar]
  10. Emery, T.(1986). Exchange of iron by gallium in siderophores. Biochemistry 25, 4629–4633.[CrossRef] [Google Scholar]
  11. Genco, C. A. & Dixon, D. W.(2001). Emerging strategies in microbial haem capture. Mol Microbiol 39, 1–11.[CrossRef] [Google Scholar]
  12. Kosman, D. J.(2003). Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47, 1185–1197.[CrossRef] [Google Scholar]
  13. Kulda, J., Cerkasov, J., Demes, P. & Cerkasovova, A.(1984).Tritrichomonas foetus: stable anaerobic resistance to metronidazole in vitro. Exp Parasitol 57, 93–103.[CrossRef] [Google Scholar]
  14. Kulda, J., Poislova, M., Suchan, P. & Tachezy, J.(1999). Iron enhancement of experimental infection of mice by Tritrichomonas foetus. Parasitol Res 85, 692–699.[CrossRef] [Google Scholar]
  15. Kutty, R. K. & Maines, M. D.(1981). Purification and characterization of biliverdin reductase from rat liver. J Biol Chem 256, 3956–3962. [Google Scholar]
  16. Lehker, M. W., Chang, T. H., Dailey, D. C. & Alderete, J. F.(1990). Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. J Exp Med 171, 2165–2170.[CrossRef] [Google Scholar]
  17. Lesuisse, E. & Labbe, P.(1989). Reductive and non-reductive mechanisms of iron assimilation in the yeast Saccharomyces cerevisiae. J Gen Microbiol 135, 257–263. [Google Scholar]
  18. Lesuisse, E., Raguzzi, F. & Crichton, R. R.(1987). Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133, 3229–3236. [Google Scholar]
  19. Lesuisse, E., Simon-Casteras, M. & Labbe, P.(1998). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.[CrossRef] [Google Scholar]
  20. Lesuisse, E., Knight, S. A., Camadro, J.-M. & Dancis, A.(2002). Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19, 329–340.[CrossRef] [Google Scholar]
  21. Mardh, P. A.(1991). The vaginal ecosystem. Am J Obstet Gynecol 165, 1163–1168.[CrossRef] [Google Scholar]
  22. McDonagh, A. F. & Palma, L. A.(1980). Preparation and properties of crystalline biliverdin IX alpha. Simple methods for preparing isomerically homogeneous biliverdin and [14C]biliverdin by using 2,3-dichloro-5,6-dicyanobenzoquinone. Biochem J 189, 193–208. [Google Scholar]
  23. Meyer, J.-M.(2000). Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174, 135–142.[CrossRef] [Google Scholar]
  24. Müller, M.(2003). Energy metabolism, part I: anaerobic protozoa. In Molecular Medical Parasitology, pp. 125–139. Edited by J. J. Marr, T. W. Nilsen & R. W. Komuniecki. New York: Academic Press.
  25. Neilands, J. B.(1995). Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270, 26723–26726.[CrossRef] [Google Scholar]
  26. Powell, P. E., Cline, G. R., Reid, C. P. P. & Szanislo, J.(1980). Occurrence of hydroxamate siderophore iron chelates in soils. Nature 287, 833–835.[CrossRef] [Google Scholar]
  27. Ratledge, C. & Dover, L. G.(2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef] [Google Scholar]
  28. Santos, R., Buisson, N., Knight, S., Dancis, A., Camadro, J.-M. & Lesuisse, E.(2003). Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149, 579–588.[CrossRef] [Google Scholar]
  29. Steverding, D., Stierhof, Y. D., Fuchs, H., Tauber, R. & Overath, P.(1995). Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol 131, 1173–1182.[CrossRef] [Google Scholar]
  30. Suchan, P., Vyoral, D., Petrak, J., Sutak, R., Rasoloson, D., Nohynkova, E., Dolezal, P. & Tachezy, J.(2003). Incorporation of iron into Tritrichomonas foetus cell compartments reveals ferredoxin as a major iron-binding protein in hydrogenosomes. Microbiology 149, 1911–1921.[CrossRef] [Google Scholar]
  31. Sutak, R., Dolezal, P., Fiumera, H. L., Hrdy, I., Dancis, A., Delgadillo-Correa, M., Johnson, P. J., Muller, M. & Tachezy, J.(2004a). Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101, 10368–10373.[CrossRef] [Google Scholar]
  32. Sutak, R., Tachezy, J., Kulda, J. & Hrdy, I.(2004b). Pyruvate decarboxylase, the target for omeprazole in metronidazole-resistant and iron-restricted Tritrichomonas foetus. Antimicrob Agents Chemother 48, 2185–2189.[CrossRef] [Google Scholar]
  33. Tachezy, J., Kulda, J., Bahnikova, I., Suchan, P., Razga, J. & Schrevel, J.(1996).Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp Parasitol 83, 216–228.[CrossRef] [Google Scholar]
  34. Tachezy, J., Suchan, P., Schrevel, J. & Kulda, J.(1998). The host-protein-independent iron uptake by Tritrichomonas foetus. Exp Parasitol 90, 155–163.[CrossRef] [Google Scholar]
  35. Vanacova, S., Rasoloson, D., Razga, J., Hrdy, I., Kulda, J. & Tachezy, J.(2001). Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147, 53–62. [Google Scholar]
  36. Wiebe, C. & Winkelmann, G.(1975). Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol 123, 837–842. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27544-0
Loading
/content/journal/micro/10.1099/mic.0.27544-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed