1887

Abstract

Intraspecies genetic diversity has been demonstrated to be important in the pathogenesis and epidemiology of several pathogens, such as HIV, influenza, and . It is also important to consider strain-to-strain variation when identifying drug targets and vaccine antigens and developing tools for molecular diagnostics. Here, the authors present a description of the variability in gene expression patterns among ten clinical isolates of , plus the laboratory strains H37Rv and H37Ra, growing in liquid culture. They identified 527 genes (15 % of those tested) that are variably expressed among the isolates studied. The remaining genes were divided into three categories based on their expression levels: unexpressed (38 %), low to undetectable expression (31 %) and consistently expressed (16 %). The expression categories were compared with functional categories and three biologically interesting gene lists: genes that are deleted among clinical isolates, T-cell antigens and essential genes. There were significant associations between expression variability and the classification of genes as T-cell antigens, involved in lipid metabolism, PE/PPE, insertion sequences and phages, and deleted among clinical isolates. This survey of mRNA expression among clinical isolates of demonstrates that genes with important functions can vary in their expression levels between strains grown under identical conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27539-0
2005-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510005.html?itemId=/content/journal/micro/10.1099/mic.0.27539-0&mimeType=html&fmt=ahah

References

  1. Azad, A. K., Sirakova, T. D., Fernandes, N. D. & Kolattukudy, P. E. ( 1997; ). Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272, 16741–16745.[CrossRef]
    [Google Scholar]
  2. Banu, S., Honore, N., Saint-Joanis, B., Philpott, D., Prevost, M. C. & Cole, S. T. ( 2002; ). Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44, 9–19.[CrossRef]
    [Google Scholar]
  3. Barry, C. E., 3rd ( 2001; ). Interpreting cell wall ‘virulence factors' of Mycobacterium tuberculosis. Trends Microbiol 9, 237–241.[CrossRef]
    [Google Scholar]
  4. Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S. & Small, P. M. ( 1999; ). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.[CrossRef]
    [Google Scholar]
  5. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. ( 2002; ). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43, 717–731.[CrossRef]
    [Google Scholar]
  6. Brennan, M. J. & Delogu, G. ( 2002; ). The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10, 246–249.[CrossRef]
    [Google Scholar]
  7. Brennan, M. J., Delogu, G., Chen, Y., Bardarov, S., Kriakov, J., Alavi, M. & Jacobs, W. R., Jr ( 2001; ). Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69, 7326–7333.[CrossRef]
    [Google Scholar]
  8. Chaicumpar, K., Fujiwara, N., Nishimura, O., Hotta, H., Pan, J. W., Takahashi, M., Abe, C. & Yano, I. ( 1997; ). Studies of polymorphic DNA fingerprinting and lipid pattern of Mycobacterium tuberculosis patient isolates in Japan. Microbiol Immunol 41, 107–119.[CrossRef]
    [Google Scholar]
  9. Cole, S. T., Brosch, R., Parkhill, J. & 39 other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  10. Covert, B. A., Spencer, J. S., Orme, I. M. & Belisle, J. T. ( 2001; ). The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics 1, 574–586.[CrossRef]
    [Google Scholar]
  11. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R., Jr ( 1999; ). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83.[CrossRef]
    [Google Scholar]
  12. Daffe, M. & Etienne, G. ( 1999; ). The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis 79, 153–169.[CrossRef]
    [Google Scholar]
  13. Dudoit, S., Yang, Y. H., Callow, M. J. & Speed, T. P. ( 2002; ). Statistical methods for identifying differentially expressed genes in replicated microarray experiments. Statistica Sinica 12, 111–139.
    [Google Scholar]
  14. Dudoit, S., Shaffer, J. P. & Boldrick, J. C. ( 2003; ). Multiple hypothesis testing in microarray experiments. Stat Sci 18, 71–103.[CrossRef]
    [Google Scholar]
  15. Fellenberg, K., Hauser, N. C., Brors, B., Neutzner, A., Hoheisel, J. D. & Vingron, M. ( 2001; ). Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A 98, 10781–10786.[CrossRef]
    [Google Scholar]
  16. Fisher, M. A., Plikaytis, B. B. & Shinnick, T. M. ( 2002; ). Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184, 4025–4032.[CrossRef]
    [Google Scholar]
  17. Fleischmann, R. D., Alland, D., Eisen, J. A. & 23 other authors ( 2002; ). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184, 5479–5490.[CrossRef]
    [Google Scholar]
  18. Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. & Ohlrogge, J. ( 2000; ). Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124, 1570–1581.[CrossRef]
    [Google Scholar]
  19. Greenacre, M. ( 1984; ). Theory and Applications of Correspondence Analysis. London: Academic Press.
  20. Hiromatsu, K., Dascher, C. C., LeClair, K. P., Sugita, M., Furlong, S. T., Brenner, M. B. & Porcelli, S. A. ( 2002; ). Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 169, 330–339.[CrossRef]
    [Google Scholar]
  21. Jasmer, R. M., Hahn, J. A., Small, P. M. & 7 other authors ( 1999; ). A molecular epidemiologic analysis of tuberculosis trends in San Francisco, 1991–1997. Ann Intern Med 130, 971–978.[CrossRef]
    [Google Scholar]
  22. Kana, B. D. & Mizrahi, V. ( 2004; ). Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis (Edinb) 84, 63–75.[CrossRef]
    [Google Scholar]
  23. Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D. & Madore, S. J. ( 2000; ). Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28, 4552–4557.[CrossRef]
    [Google Scholar]
  24. Kato-Maeda, M., Rhee, J. T., Gingeras, T. R., Salamon, H., Drenkow, J., Smittipat, N. & Small, P. M. ( 2001; ). Comparing genomes within the species Mycobacterium tuberculosis. Genome Res 11, 547–554.[CrossRef]
    [Google Scholar]
  25. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M. & Sirakova, T. D. ( 1997; ). Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24, 263–270.[CrossRef]
    [Google Scholar]
  26. Kuznetsov, V. A., Knott, G. D. & Bonner, R. F. ( 2002; ). General statistics of stochastic process of gene expression in eukaryotic cells. Genetics 161, 1321–1332.
    [Google Scholar]
  27. Manganelli, R., Voskuil, M. I., Schoolnik, G. K., Dubnau, E., Gomez, M. & Smith, I. ( 2002; ). Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression. Mol Microbiol 45, 365–374.[CrossRef]
    [Google Scholar]
  28. Puzo, G. ( 1990; ). The carbohydrate- and lipid-containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties. Crit Rev Microbiol 17, 305–327.[CrossRef]
    [Google Scholar]
  29. Rook, G. A. & Zumla, A. ( 2001; ). Advances in the immunopathogenesis of pulmonary tuberculosis. Curr Opin Pulm Med 7, 116–123.[CrossRef]
    [Google Scholar]
  30. Rosat, J. P., Grant, E. P., Beckman, E. M. & 7 other authors ( 1999; ). CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol 162, 366–371.
    [Google Scholar]
  31. Sampson, S. L., Lukey, P., Warren, R. M., van Helden, P. D., Richardson, M. & Everett, M. J. ( 2001; ). Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis (Edinb) 81, 305–317.[CrossRef]
    [Google Scholar]
  32. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. ( 2003; ). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77–84.[CrossRef]
    [Google Scholar]
  33. Smith, C. V., Sharma, V. & Sacchettini, J. C. ( 2004; ). TB drug discovery: addressing issues of persistence and resistance. Tuberculosis (Edinb) 84, 45–55.[CrossRef]
    [Google Scholar]
  34. Talaat, A. M., Howard, S. T., Hale, W. T., Lyons, R., Garner, H. & Johnston, S. A. ( 2002; ). Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res 30, e104.[CrossRef]
    [Google Scholar]
  35. Tsolaki, A. G., Hirsh, A. E., DeRiemer, K. & 7 other authors ( 2004; ). Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A 101, 4865–4870.[CrossRef]
    [Google Scholar]
  36. Valway, S. E., Sanchez, M. P., Shinnick, T. F., Orme, I., Agerton, T., Hoy, D., Jones, J. S., Westmoreland, H. & Onorato, I. M. ( 1998; ). An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N Engl J Med 338, 633–639.[CrossRef]
    [Google Scholar]
  37. Wilson, M., DeRisi, J., Kristensen, H. H., Imboden, P., Rane, S., Brown, P. O. & Schoolnik, G. K. ( 1999; ). Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 96, 12833–12838.[CrossRef]
    [Google Scholar]
  38. Xu, W., Bak, S., Decker, A., Paquette, S. M., Feyereisen, R. & Galbraith, D. W. ( 2001; ). Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272, 61–74.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27539-0
Loading
/content/journal/micro/10.1099/mic.0.27539-0
Loading

Data & Media loading...

Supplements

[PDF file](11 KB)

PDF

Identity graphs, in which the log ratios from each replicate array in a set are plotted against the corresponding values from another array of the same strain. [PDF file](16 KB)

PDF

Hierarchical cluster diagram of 527 variable genes. [PDF file](133 KB)

PDF

Histogram of log ratios of deleted genes. [PDF file](101 KB)

PDF

Genes listed in Tuberculist that do not appear in our dataset, either because they are not on the microarray, or because they were removed from the dataset due to not enough good data. Excel file(32 KB)

EXCEL

All genes in data set, with expression level and functional categories. Excel file(579 KB)

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error