1887

Abstract

The hydrogenase content of the genome of , a member of the family within the -subdivision of the , was examined and found to be distinct from that of species, another family of - on which extensive research concerning hydrogen metabolism has been conducted. Four [NiFe]-hydrogenases are encoded in the genome: two periplasmically oriented, membrane-bound hydrogenases, Hya and Hyb, and two cytoplasmic hydrogenases, Mvh and Hox. None of these [NiFe]-hydrogenases has a counterpart in species. Furthermore, the large and small subunits of Mvh and Hox appear to be related to archaeal and cyanobacterial hydrogenases, respectively. Clusters encoding [Fe]-hydrogenases and periplasmic [NiFeSe]-hydrogenases, which are commonly found in the genomes of species, are not present in the genome of . Hydrogen-evolving Ech hydrogenases, which are present in the genomes of at least two species, were also absent from the genome, despite the fact that is capable of hydrogen production. Instead, the genome contained a cluster encoding a multimeric ch ydrogenase elated (Ehr) complex that was similar in content to operons encoding Ech hydrogenases, but did not appear to encode a hydrogenase. Phylogenetic analysis revealed that the cluster is part of a family of related clusters found in both the Archaea and Bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27535-0
2005-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511239.html?itemId=/content/journal/micro/10.1099/mic.0.27535-0&mimeType=html&fmt=ahah

References

  1. Adams M. W. 1990; The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145 [CrossRef]
    [Google Scholar]
  2. Albracht S. P. 1994; Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204 [CrossRef]
    [Google Scholar]
  3. Alex L. A., Reeve J. N., Orme-Johnson W. H., Walsh C. T. 1990; Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum delta H. Biochemistry 29:7237–7244 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  5. Anderson R. T., Lovley D. R. 1999; Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediation J 3:121–135 [CrossRef]
    [Google Scholar]
  6. Anderson R., Vrionis H., Ortiz-Bernad I. 10 other authors 2003; Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  7. Andrews S. C., Berks B. C., McClay J., Ambler A., Quail M. A., Golby P., Guest J. R. 1997; A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647 [CrossRef]
    [Google Scholar]
  8. Appel J., Schulz R. 1996; Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochim Biophys Acta 1298:141–147 [CrossRef]
    [Google Scholar]
  9. Bagramyan K., Mnatsakanyan N., Poladian A., Vassilian A., Trchounian A. 2002; The roles of hydrogenases 3 and 4, and the F0F1-ATPase,in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178 [CrossRef]
    [Google Scholar]
  10. Bagramyan K., Mnatsakanyan N., Trchounian A. 2003; Formate increases the F0F1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH. Biochem Biophys Res Commun 306:361–365 [CrossRef]
    [Google Scholar]
  11. Bateman A., Birney E., Cerruti L. 7 other authors 2002; The Pfam Protein Families Database. Nucleic Acids Res 30:276–280 [CrossRef]
    [Google Scholar]
  12. Berg B. L., Stewart V. 1990; Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics 125:691–702
    [Google Scholar]
  13. Bingemann R., Klein A. 2000; Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae. Eur J Biochem 267:6612–6618 [CrossRef]
    [Google Scholar]
  14. Black L. K., Fu C., Maier R. J. 1994; Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176:7102–7106
    [Google Scholar]
  15. Bock A., Sawers G. others 1996; Fermentation. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp 262–282 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Bond D. R., Lovley D. R. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555 [CrossRef]
    [Google Scholar]
  17. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  18. Brugna-Guiral M., Tron P., Nitschke W., Stetter K. O., Burlat B., Guigliarelli B., Bruschi M., Giudici-Orticoni M. T. 2003; [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 7:145–157
    [Google Scholar]
  19. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  20. Casalot L., Hatchikian C. E., Forget N., de Philip P., Dermoun Z., Rousset M, Bélaïch J. P. 1998; Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructosovorans. Anaerobe 4:45–55 [CrossRef]
    [Google Scholar]
  21. Cauvin B., Colbeau A., Vignais P. M. 1991; The hydrogenase structural operon in Rhodobacter capsulatus contains a third gene, hupM, necessary for the formation of a physiologically competent hydrogenase. Mol Microbiol 5:2519–2527 [CrossRef]
    [Google Scholar]
  22. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413 [CrossRef]
    [Google Scholar]
  23. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  24. Coppi M. V., O'Neil R. A., Lovley D. R. 2004; Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors. J Bacteriol 186:3022–3028 [CrossRef]
    [Google Scholar]
  25. Cord-Ruwisch R., Lovley D. R., Schink B. 1998; Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236
    [Google Scholar]
  26. Cummings D. E., Snoeyenbos-West O. L., Newby D. T., Niggemyer A. M., Lovley D. R., Achenbach L. A., Rosenzweig R. F. 2003; Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microbial Ecol 46:257–269
    [Google Scholar]
  27. Darwin A., Tormay P., Page L., Griffiths L., Cole J. 1993; Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12. J Gen Microbiol 139:1829–1840 [CrossRef]
    [Google Scholar]
  28. Dross F., Geisler V., Lenger R. 7 other authors 1992; The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206:93–102 [CrossRef]
    [Google Scholar]
  29. Eisen J. A., Nelson K. E., Paulsen I. T. 32 other authors 2002; The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99:9509–9514 [CrossRef]
    [Google Scholar]
  30. Fauque G., Peck H. D. Jr, Moura J. J. G. n other authors 1988; The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 4:299–344
    [Google Scholar]
  31. Frey M. 2002; Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160 [CrossRef]
    [Google Scholar]
  32. Gascuel O. 1997; BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  33. Gross R., Simon J., Lancaster C. R., Kroger A. 1998a; Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol Microbiol 30:639–646 [CrossRef]
    [Google Scholar]
  34. Gross R., Simon J., Theis F., Kroger A. 1998b; Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch Microbiol 170:50–58 [CrossRef]
    [Google Scholar]
  35. Gross R., Simon J., Kroger A. 1999; The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase fromWolinella succinogenes. Arch Microbiol 172:227–232 [CrossRef]
    [Google Scholar]
  36. Halboth S., Klein A. 1992; Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol Gen Genet 233:217–224 [CrossRef]
    [Google Scholar]
  37. Hedderich R. 2004; Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75 [CrossRef]
    [Google Scholar]
  38. Hedderich R., Koch J., Linder D., Thauer R. K. 1994; The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem 225:253–261 [CrossRef]
    [Google Scholar]
  39. Heidelberg J. F., Seshadri R., Haveman S. A. 32 other authors 2004; The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559 [CrossRef]
    [Google Scholar]
  40. Henikoff S., Henikoff J. G. 1992; Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919 [CrossRef]
    [Google Scholar]
  41. Holmes D. E., Bond D. R., O'Neil R. A., Reimers C. E., Lovley D. R. 2004a; Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190 [CrossRef]
    [Google Scholar]
  42. Holmes D. E., Nevin K. P., Lovley D. R. 2004b; Comparison of 16S rRNA, nifD, recA, gyrB, rpoB, and fusAgenes within the family Geobacteraceae. Int J Syst Evol Microbiol 70:6023–6030
    [Google Scholar]
  43. Ikenaga M., Asakawa S., Muraoka Y., Kimura M. 2003; Bacterial communities associated with nodal roots of rice plants along with the growth stages: estimation by PCR-DGGE and sequence analyses. Soil Sci Plant Nutr 49:591–602 [CrossRef]
    [Google Scholar]
  44. Istok J., Senko J., Krumholz L., Watson D., Bogle M., Peacock A., Chang Y., White D. 2004; In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Tech 38:468–475 [CrossRef]
    [Google Scholar]
  45. Kortlüke C., Horstmann K., Schwartz E., Rohde M., Binsack R., Friedrich B. 1992; A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174:6277–6289
    [Google Scholar]
  46. Kunkel A., Vorholt J. A., Thauer R. K., Hedderich R. 1998; An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252:467–476 [CrossRef]
    [Google Scholar]
  47. Laurinavichene T. V., Tsygankov A. A. 2001; H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett 202:121–124 [CrossRef]
    [Google Scholar]
  48. Laurinavichene T. V., Zorin N. A., Tsygankov A. A. 2002; Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch Microbiol 178:437–442 [CrossRef]
    [Google Scholar]
  49. Leclerc M., Colbeau A., Cauvin B., Vignais P. M. 1988; Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol Gen Genet 214:97–107 [CrossRef]
    [Google Scholar]
  50. Li C., Przybyla A. E, Peck H. D. Jr, LeGall J. 1987; Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas. DNA 6:539–551 [CrossRef]
    [Google Scholar]
  51. Lovley D. R. 2000; Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes Edited by Dworkin M., Falkow S., Rosenberg K., Schleifer H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  52. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344 [CrossRef]
    [Google Scholar]
  53. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn (IV) reduction. Adv Microb Physiol 49:219–286
    [Google Scholar]
  54. Meek L., Arp D. J. 2000; The hydrogenase cytochrome b heme ligands of Azotobacter vinelandii are required for full H2 oxidation capability. J Bacteriol 182:3429–3436 [CrossRef]
    [Google Scholar]
  55. Menon A. L., Mortenson L. E., Robson R. L. 1992; Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes inAzotobacter vinelandii. J Bacteriol 174:4549–4557
    [Google Scholar]
  56. Menon N. K., Chatelus C. Y., Dervartanian M., Wendt J. C., Shanmugam K. T., Przybyla A. E, Peck H. D. Jr 1994; Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423
    [Google Scholar]
  57. Methé B. A., Nelson K. E., Eisen J. A. & 31 other authors; 2003; Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  58. Methé B. A., Webster J., Nevin K. P., Butler J., Lovley D. R. 2005; DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl Environ Microbiol in press)
    [Google Scholar]
  59. Meuer J., Bartoschek S., Koch J., Kunkel A., Hedderich R. 1999; Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265:325–335 [CrossRef]
    [Google Scholar]
  60. Meuer J., Kuettner H. C., Zhang J. K., Hedderich R., Metcalf W. W. 2002; Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99:5632–5637 [CrossRef]
    [Google Scholar]
  61. Moshiri F., Stults L., Novak P., Maier R. J. 1983; Nif- Hup- mutants of Rhizobium japonicum. J Bacteriol 155:926–929
    [Google Scholar]
  62. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453 [CrossRef]
    [Google Scholar]
  63. Petrie L., North N. N., Dollhopf S. L., Balkwill D. L., Kostka J. E. 2003; Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI. Appl Environ Microbiol 69:7467–7479 [CrossRef]
    [Google Scholar]
  64. Przybyla A. E., Robbins J., Menon N., Peck H. D., Jr. 1992; Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 8:109–135
    [Google Scholar]
  65. Rambaut A. 1996; Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk/
  66. Reeve J. N., Beckler G. S., Cram D. S. 7 other authors 1989; A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. Proc Natl Acad Sci U S A 86:3031–3035 [CrossRef]
    [Google Scholar]
  67. Richaud P., Vignais P. M., Colbeau A., Uffen R. L., Cauvin B. 1990; Molecular biology studies of the uptake hydrogenase of Rhodobacter capsulatus and Rhodocyclus gelatinosus. FEMS Microbiol Rev 7:413–418
    [Google Scholar]
  68. Robinson C., Bolhuis A. 2001; Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2:350–356 [CrossRef]
    [Google Scholar]
  69. Rodrigues R., Valente F. M., Pereira I. A., Oliveira S., Rodrigues-Pousada C. 2003; A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun 306:366–375 [CrossRef]
    [Google Scholar]
  70. Roling W. F., van Breukelen B. M., Braster M., Lin B., van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  71. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  72. Rousset M., Magro V., Forget N., Guigliarelli B., Belaich J. P., Hatchikian E. C. 1998; Heterologous expression of the Desulfovibrio gigas[NiFe] hydrogenase in Desulfovibrio fructosovorans MR400. J Bacteriol 180:4982–4986
    [Google Scholar]
  73. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  74. Sapra R., Verhagen M. F., Adams M. W. 2000; Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428 [CrossRef]
    [Google Scholar]
  75. Sapra R., Bagramyan K., Adams M. W. 2003; A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci U S A 100:7545–7550 [CrossRef]
    [Google Scholar]
  76. Sargent F., Ballantine S. P., Rugman P. A., Palmer T., Boxer D. H. 1998; Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit – identification of a soluble precursor of the small subunit in a hypB mutant. Eur J Biochem 255:746–754 [CrossRef]
    [Google Scholar]
  77. Sauter M., Bohm R., Bock A. 1992; Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532 [CrossRef]
    [Google Scholar]
  78. Sayavedra-Soto L. A., Arp D. J. 1992; The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase. J Bacteriol 174:5295–5301
    [Google Scholar]
  79. Sayavedra-Soto L. A., Arp D. J. 1993; In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 294, and 297 in the small (HoxK) subunit affects H2 oxidation [corrected]. J Bacteriol 175:3414–3421
    [Google Scholar]
  80. Sayavedra-Soto L. A., Powell G. K., Evans H. J., Morris R. O. 1988; Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci U S A 85:8395–8399 [CrossRef]
    [Google Scholar]
  81. Schutz K., Happe T., Troshina O., Lindblad P., Leitao E., Oliveira P., Tamagnini P. 2004; Cyanobacterial H2 production – a comparative analysis. Planta 218:350–359 [CrossRef]
    [Google Scholar]
  82. Schwartz E., Henne A., Cramm R., Eitinger T., Friedrich B., Gottschalk G. 2003; Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based ithoautotrophy and anaerobiosis. J Mol Biol 332:369–383 [CrossRef]
    [Google Scholar]
  83. Self W. T., Hasona A., Shanmugam K. T. 2004; Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587 [CrossRef]
    [Google Scholar]
  84. Skibinski D. A., Golby P., Chang Y. S. 7 other authors 2002; Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642–6653 [CrossRef]
    [Google Scholar]
  85. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T., Lovley D. R. 2000; Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167 [CrossRef]
    [Google Scholar]
  86. Sorgenfrei O., Linder D., Karas M., Klein A. 1993; A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is postranslationally processed by cleavage at a defined position. Eur J Biochem 213:1355–1358 [CrossRef]
    [Google Scholar]
  87. Stein L. Y., La Duc M. T., Grundl T. J., Nealson K. H. 2001; Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 [CrossRef]
    [Google Scholar]
  88. Stojanowic A., Mander G. J., Duin E. C., Hedderich R. 2003; Physiological role of the F420-non-reducing hydrogenase (Mvh) fromMethanothermobacter marburgensis. Arch Microbiol 180:194–203 [CrossRef]
    [Google Scholar]
  89. Tamagnini P., Axelsson R., Lindberg P., Oxelfelt F., Wunschiers R., Lindblad P. 2002; Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20 [CrossRef]
    [Google Scholar]
  90. Thauer R. K. 1998; Biochemistry of methanogenesis: a tribute to Marjory Stephenson; 1998; Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406 [CrossRef]
    [Google Scholar]
  91. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  92. Tran-Betcke A., Warnecke U., Bocker C., Zaborosch C., Friedrich B. 1990; Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172:2920–2929
    [Google Scholar]
  93. Vignais P. M., Colbeau A. 2004; Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188
    [Google Scholar]
  94. Vignais P. M., Billoud B., Meyer J. 2001; Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501 [CrossRef]
    [Google Scholar]
  95. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. 1995; Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587 [CrossRef]
    [Google Scholar]
  96. von Bunau R., Zirngibl C., Thauer R. K., Klein A. 1991; Hydrogen-forming and coenzyme-F420-reducing methylene tetrahydromethanopterin dehydrogenase are genetically distinct enzymes in Methanobacterium thermoautotrophicum (Marburg). Eur J Biochem 202:1205–1208 [CrossRef]
    [Google Scholar]
  97. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. 1998; A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101 [CrossRef]
    [Google Scholar]
  98. Wu L. F., Ize B., Chanal A., Quentin Y., Fichant G. 2000; Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J Mol Microbiol Biotechnol 2:179–189
    [Google Scholar]
  99. Zdobnov E. M., Apweiler R. 2001; InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27535-0
Loading
/content/journal/micro/10.1099/mic.0.27535-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error