1887

Abstract

is a ubiquitous human skin commensal that has emerged as a major cause of foreign-body infections. Eleven genes encoding putative cell-wall-anchored proteins were identified by computer analysis of the publicly available unfinished genomic sequence. Four genes encode previously described proteins (Aap, Bhp, SdrF and SdrG), while the remaining seven have not been characterized. Analysis of primary sequences of the urface (Ses) proteins indicates that they have a structural organization similar to the previously described cell-wall-anchored proteins from and other Gram-positive cocci. However, not all of the Ses proteins are direct homologues of the proteins. Secondary and tertiary structure predictions suggest that most of the Ses proteins are composed of several contiguous subdomains, and that the majority of these predicted subdomains are folded into -rich structures. PCR analysis indicates that certain genes may be found more frequently in disease isolates compared to strains isolated from healthy skin. Patients recovering from infections had higher antibody titres against some Ses proteins, implying that these proteins are expressed during human infection. Western blot analyses of early-logarithmic and late-stationary cultures suggest that different regulatory mechanisms control the expression of the Ses proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27534-0
2005-05-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511453.html?itemId=/content/journal/micro/10.1099/mic.0.27534-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Boggon, T. J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B. M. & Shapiro, L. ( 2002; ). C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313.[CrossRef]
    [Google Scholar]
  3. Bowden, M. G., Visai, L., Longshaw, C. M., Holland, K. T., Speziale, P. & Höök, M. ( 2002; ). Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277, 43017–43023.[CrossRef]
    [Google Scholar]
  4. Chan, P. T. ( 1986; ). Nucleotide sequence of the Staphylococcus aureus PC1 beta-lactamase gene. Nucleic Acids Res 14, 5940.[CrossRef]
    [Google Scholar]
  5. Comfort, D. & Clubb, R. T. ( 2004; ). A comparative genome analysis identifies distinct sorting pathways in Gram-positive bacteria. Infect Immun 72, 2710–2722.[CrossRef]
    [Google Scholar]
  6. Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I. & Penades, J. R. ( 2001; ). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183, 2888–2896.[CrossRef]
    [Google Scholar]
  7. Dao-Thi, M. H. T. W., Hamelrick, T. W., Poortmans, F., Voelker, T. A., Chrispeels, M. J. & Wyns, L. ( 1996; ). Crystallization of glycosylated and non-glycosylated phytohemagglutinin-L. Proteins 24, 134–137.[CrossRef]
    [Google Scholar]
  8. Davis, S. L., Gurusiddappa, S., McCrea, K. W., Perkins, S. & Höök, M. ( 2001; ). SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβ chain. J Biol Chem 276, 27799–27805.[CrossRef]
    [Google Scholar]
  9. Deivanayagam, C. C., Perkins, S., Danthuluri, S., Owens, R. T., Bice, T., Nanavathy, T., Foster, T. J., Höök, M. & Narayana, S. V. ( 1999; ). Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus. Acta Crystallogr Sect D Biol Crystallogr 55, 554–556.[CrossRef]
    [Google Scholar]
  10. Deivanayagam, C. C., Rich, R. L., Carson, M., Owens, R. T., Danthuluri, S., Bice, T., Höök, M. & Narayana, S. V. ( 2000; ). Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure Fold Des 8, 67–78.[CrossRef]
    [Google Scholar]
  11. Deivanayagam, C. C., Wann, E. R., Chen, W., Carson, M., Rajashankar, K. R., Höök, M. & Narayana, S. V. ( 2002; ). A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21, 6660–6672.[CrossRef]
    [Google Scholar]
  12. de Silva, G. D., Justice, A., Wilkinson, A. R., Buttery, J., Herbert, M., Day, N. P. & Peacock, S. J. ( 2001; ). Genetic population structure of coagulase-negative staphylococci associated with carriage and disease in preterm infants. Clin Infect Dis 33, 1520–1528.[CrossRef]
    [Google Scholar]
  13. Farrell, A. M., Foster, T. J. & Holland, K. T. ( 1993; ). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 139, 267–277.[CrossRef]
    [Google Scholar]
  14. Gaskell, A., Crennell, S. & Taylor, G. ( 1995; ). The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197–1205.[CrossRef]
    [Google Scholar]
  15. Geissler, S., Gotz, F. & Kupke, T. ( 1996; ). Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178, 284–288.
    [Google Scholar]
  16. Gill, S. R., Fouts, D. E., Archer, G. L. & 27 other authors ( 2005; ). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin resistant Staphylococcus aureus and a biofilm producing methicillin resistant Staphylococcus epidermidis. J Bacteriol 187, in press.
    [Google Scholar]
  17. Guss, B., Uhlen, M., Nilsson, B., Lindberg, M., Sjoquist, J. & Sjodahl, J. ( 1984; ). Region X, the cell-wall-attachment part of staphylococcal protein A. Eur J Biochem 138, 413–420.[CrossRef]
    [Google Scholar]
  18. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. ( 1999; ). Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295.[CrossRef]
    [Google Scholar]
  19. Hartford, O., Francois, P., Vaudaux, P. & Foster, T. J. ( 1997; ). The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 25, 1065–1076.[CrossRef]
    [Google Scholar]
  20. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. ( 1997; ). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  21. Herrmann, M., Vaudaux, P. D., Pittet, R. A., Lew, P. D., Schumacher-Perdreau, F., Peters, G. & Waldvogel, F. A. ( 1988; ). Fibronectin, fibrinogen and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158, 693–701.[CrossRef]
    [Google Scholar]
  22. Hussain, M., Herrmann, M., von Eiff, C., Perdreau-Remington, F. & Peters, G. ( 1997; ). A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65, 519–524.
    [Google Scholar]
  23. Joyce, J. G., Abeygunawardana, C., Xu, Q. & 18 other authors ( 2003; ). Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. Carbohydr Res 338, 903–922.[CrossRef]
    [Google Scholar]
  24. Kehoe, M. A. ( 1994; ). Cell-wall-associated proteins in Gram-positive bacteria. In Bacterial Cell Wall, pp. 217–261. Edited by J. M. G. R. Hackenbeck. Amsterdam: Elsevier Science.
  25. Kelley, L. A., MacCallum, R. M. & Sternberg, M. J. ( 2000; ). Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299, 499–520.
    [Google Scholar]
  26. Komatsuzawa, H., Ohta, K., Sugai, M., Fujiwara, T., Glanzmann, P., Berger Bachi, B. & Suginaka, H. ( 2000; ). Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 45, 421–431.[CrossRef]
    [Google Scholar]
  27. Longshaw, C. M., Farrell, A. M., Wright, J. D. & Holland, K. T. ( 2000; ). Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology 146, 1419–1427.
    [Google Scholar]
  28. Mazmanian, S. K., Ton-That, H. & Schneewind, O. ( 2001; ). Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40, 1049–1057.[CrossRef]
    [Google Scholar]
  29. McCrea, K. W., Hartford, O., Davis, S., Eidhin, D. N., Lina, G., Speziale, P., Foster, T. J. & Höök, M. ( 2000; ). The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146, 1535–1546.
    [Google Scholar]
  30. Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Höök, M. & Foster, T. J. ( 1998; ). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30, 245–257.[CrossRef]
    [Google Scholar]
  31. Nielsen, J. B. & Lampen, J. O. ( 1983; ). Beta-lactamase III of Bacillus cereus 569: membrane lipoprotein and secreted protein. Biochemistry 22, 4652–4656.[CrossRef]
    [Google Scholar]
  32. Nilsson, M., Frykberg, L., Flock, J. I., Pei, L., Lindberg, M. & Guss, B. ( 1998; ). A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun 66, 2666–2673.
    [Google Scholar]
  33. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. ( 1995; ). How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4, 2411–2423.[CrossRef]
    [Google Scholar]
  34. Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. ( 2001; ). An embarrasment of sortases – a richness of substrates? Trends Microbiol 9, 97–101.[CrossRef]
    [Google Scholar]
  35. Park, P. W., Rosenbloom, J., Abrams, W. R., Rosenbloom, J. & Mecham, R. P. ( 1996; ). Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus. J Biol Chem 271, 15803–15809.[CrossRef]
    [Google Scholar]
  36. Perkins, S., Walsh, E. J., Deivanayagam, C. C., Narayana, S. V., Foster, T. J. & Höök, M. ( 2001; ). Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. J Biol Chem 276, 44721–44728.[CrossRef]
    [Google Scholar]
  37. Ponnuraj, K., Bowden, M. G., Davis, S., Gurusiddappa, S., Moore, D., Xu, Y., Höök, M. & Narayana, S. V. ( 2003; ). A ‘dock, lock and latch’ structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115, 217–228.[CrossRef]
    [Google Scholar]
  38. Roche, F. M., Massey, R., Peacock, S. J., Day, N. P., Visai, L., Speziale, P., Lam, A., Pallen, M. & Foster, T. J. ( 2003; ). Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654.[CrossRef]
    [Google Scholar]
  39. Rost, B. & Sander, C. ( 1994; ). Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72.[CrossRef]
    [Google Scholar]
  40. Rudenko, G., Henry, L., Henderson, K., Ichtchenko, K., Brown, M. S., Goldstein, J. L. & Deisenhofer, J. ( 2002; ). Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358.[CrossRef]
    [Google Scholar]
  41. Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V. & Altschul, S. F. ( 2001; ). Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29, 2994–3005.[CrossRef]
    [Google Scholar]
  42. Schneewind, O., Mihaylova-Petkov, D. & Model, P. ( 1993; ). Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J 12, 4803–4811.
    [Google Scholar]
  43. Schneewind, O., Fowler, A. & Faull, K. F. ( 1995; ). Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268, 103–106.[CrossRef]
    [Google Scholar]
  44. Shen, X., Gumulak, J., Yu, H., French, C. T., Zou, N. & Dybvig, K. ( 2000; ). Gene rearrangements in the vsa locus of Mycoplasma pulmonis. J Bacteriol 182, 2900–2908.[CrossRef]
    [Google Scholar]
  45. Sillanpaa, J., Xu, Y., Nallapareddy, S. R., Murray, B. E. & Höök, M. ( 2004; ). A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 150, 2069–2078.[CrossRef]
    [Google Scholar]
  46. Teufel, P. & Gotz, F. ( 1993; ). Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J Bacteriol 175, 4218–4224.
    [Google Scholar]
  47. Wang, P. Z. & Novick, R. P. ( 1987; ). Nucleotide sequence and expression of the beta-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J Bacteriol 169, 1763–1766.
    [Google Scholar]
  48. Williams, R. J., Henderson, B., Sharp, L. J. & Nair, S. P. ( 2002; ). Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 70, 6805–6810.[CrossRef]
    [Google Scholar]
  49. Wu, S. W. & De Lencastre, H. ( 1999; ). Mrp–a new auxiliary gene essential for optimal expression of methicillin resistance in Staphylococcus aureus. Microb Drug Resist 5, 9–18.[CrossRef]
    [Google Scholar]
  50. Yu, J., Montelius, M. N., Paulsson, M., Gouda, I., Larm, O., Montelius, L. & Ljungh, A. ( 1994; ). Adhesion of a coagulase-negative staphylococci and adsorption of plasma proteins to heparinized polymer surfaces. Biomaterials 15, 805–814.[CrossRef]
    [Google Scholar]
  51. Zhang, Z., Schaffer, A. A., Miller, W., Madden, T. L., Lipman, D. J., Koonin, E. V. & Altschul, S. F. ( 1998; ). Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26, 3986–3990.[CrossRef]
    [Google Scholar]
  52. Zhang, Y. Q., Ren, S. X., Li, H. L. & 14 other authors ( 2003; ). Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49, 1577–1593.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27534-0
Loading
/content/journal/micro/10.1099/mic.0.27534-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1453–1464

Secondary and tertiary structural prediction of the A domains [PDF file](111 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error