1887

Abstract

Osmotic stress causes water molecules to efflux from cells through the cytoplasmic membrane. This study reveals that targeted mutation of the gene, encoding an aquaporin water channel protein, in the cyanobacterium sp. PCC 6803 prevents the osmotic shrinkage of cells, suggesting that it is the water channel rather than the lipid bilayer that is primarily responsible for water transition through the membrane of this organism. The observations suggest that the aquaporin-mediated shrinkage of the cells plays an important role in changes of gene expression in response to hyperosmotic stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27530-0
2005-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510447.html?itemId=/content/journal/micro/10.1099/mic.0.27530-0&mimeType=html&fmt=ahah

References

  1. Allakhverdiev S. I., Sakamoto A., Nishiyama Y., Murata N. 2000a; Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiol 122:1201–1208 [CrossRef]
    [Google Scholar]
  2. Allakhverdiev S. I., Sakamoto A., Nishiyama Y., Inaba M., Murata N. 2000b; Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056 [CrossRef]
    [Google Scholar]
  3. Blumwald E., Mehlhorn R. J., Packer L. 1983; Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc Natl Acad Sci U S A 80:2599–2602 [CrossRef]
    [Google Scholar]
  4. Borgnia M., Nielsen S., Engel A., Agre P. 1999; Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458 [CrossRef]
    [Google Scholar]
  5. Calamita G., Bishai W. R., Preston G. M., Guggino W. B., Agre P. 1995; Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli.. J Biol Chem 270:29063–29066 [CrossRef]
    [Google Scholar]
  6. Csonka L. N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147
    [Google Scholar]
  7. Delamarche C., Thomas D., Rolland J. P., Froger A., Gouranton J., Svelto M., Agre P., Calamita G. 1999; Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J Bacteriol 181:4193–4197
    [Google Scholar]
  8. Engelbrecht F., Marin K., Hagemann M. 1999; Expression of the ggpS gene, involved in osmolyte synthesis in the marine cyanobacterium Synechococcus sp. strain PCC 7002, revealed regulatory differences between this strain and the freshwater strainSynechocystis sp. strain PCC 6803. Appl Environ Microbiol 65:4822–4829
    [Google Scholar]
  9. Hecker M., Volker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91
    [Google Scholar]
  10. Heymann J. B., Engel A. 1999; Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193
    [Google Scholar]
  11. Heymann J. B., Engel A. 2000; Structural clues in the sequences of the aquaporins. J Mol Biol 295:1039–1053 [CrossRef]
    [Google Scholar]
  12. Hoffmann E. K., Dunham P. B. 1995; Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262
    [Google Scholar]
  13. Johansson I., Karlsson M., Johanson U., Larsson C., Kjellbom P. 2000; The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342 [CrossRef]
    [Google Scholar]
  14. Kaneko T., Sato S., Kotani H. 21 other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res Suppl 3:109–136 [CrossRef]
    [Google Scholar]
  15. Kanesaki Y., Suzuki I., Allakhverdiev S. I., Mikami K., Murata N. 2002; Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348 [CrossRef]
    [Google Scholar]
  16. Kiseleva L. L., Serebriiskaya T. S., Vigh L., Lyukevich A. A., Los D. A, Horvàth I. 2000; Expression of the gene for the Δ9 acyl-lipid desaturase in the thermophilic cyanobacterium. J Mol Microbiol Biotechnol 2:331–338
    [Google Scholar]
  17. Paithoonrangsarid K., Shoumskaya M. A., Kanesaki Y. 8 other authors 2004; Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis . J Biol Chem published October 7, 2004 as. doi: 10.1074/jbc.M410162200
    [Google Scholar]
  18. Pfeuffer J., Broer S., Broer A., Lechte M., Flogel U., Leibfritz D. 1998; Expression of aquaporins in Xenopus laevis oocytes and glial cells as detected by diffusion-weighted 1H NMR spectroscopy and photometric swelling assay. Biochim Biophys Acta 144827–36 [CrossRef]
    [Google Scholar]
  19. Poolman B., Glaasker E. 1998; Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407 [CrossRef]
    [Google Scholar]
  20. Prentki P., Binda A., Epstein A. 1991; Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene 103:17–23 [CrossRef]
    [Google Scholar]
  21. Rep M., Krantz M., Thevelein J. M., Hohmann S. 2000; The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300 [CrossRef]
    [Google Scholar]
  22. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev 35:171–205
    [Google Scholar]
  23. Strom A. R., Kaasen I. 1993; Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210 [CrossRef]
    [Google Scholar]
  24. Tyerman S. D., Bohnert H. J., Maurel C., Steudle E., Smith J. A. C. 1999; Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071
    [Google Scholar]
  25. Williams J. G. K. 1988; Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167:766–778
    [Google Scholar]
  26. Wood J. M. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262
    [Google Scholar]
  27. Yamaguchi K., Suzuki I., Yamamoto H. 7 other authors 2002; A two-component Mn2+-sensing system negatively regulates expression of themntCAB operon in Synechocystis . Plant Cell 14:2901–2913 [CrossRef]
    [Google Scholar]
  28. Zardoya R., Villalba S. 2001; A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52:391–404
    [Google Scholar]
  29. Zhu J. K. 2001; Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27530-0
Loading
/content/journal/micro/10.1099/mic.0.27530-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error