Protein expression by a Beijing strain differs from that of another clinical isolate and H37Rv Free

Abstract

The Beijing strain family has often been associated with tuberculosis (TB) outbreaks and drug resistance worldwide. In this study the authors have compared the protein expression and antigen recognition profiles of a local Beijing strain with a less prevalent clinical isolate belonging to the family 23 strain lineage, and the laboratory strain H37Rv. Using two-dimensional electrophoresis, liquid chromatography tandem mass spectrometry and Western blot analysis several proteins were identified as quantitatively increased or decreased in both clinical strains compared to H37Rv. Remarkably, the Beijing strain showed increased expression of -crystallin and decreased expression of Hsp65, PstS1, and the 47 kDa protein compared to the other clinical strain and H37Rv. One- and two-dimensional Western blot analysis of antigens expressed by the three strains, using plasma from TB patients, confirmed differential antigen expression by strains and patient-to-patient variation in humoral immunity. These observed protein differences could aid the elucidation of mechanisms underlying the success of the Beijing strain family, measured by global dissemination, compared to other strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27518-0
2005-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511139.html?itemId=/content/journal/micro/10.1099/mic.0.27518-0&mimeType=html&fmt=ahah

References

  1. Abulimiti A., Qiu X., Chen J., Liu Y., Chang Z. 2003; Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem Biophys Res Commun 305:87–93 [CrossRef]
    [Google Scholar]
  2. Al Zahrani K., Al Jahdali H., Poirier L., Rene P., Gennaro M. L., Menzies D. 2000; Accuracy and utility of commercially available amplification and serologic tests for the diagnosis of minimal pulmonary tuberculosis. Am J Respir Crit Care Med 162:1323–1329 [CrossRef]
    [Google Scholar]
  3. Amicosante M., Houde M., Guaraldi G., Saltini C. 1999; Sensitivity and specificity of a multi-antigen ELISA test for the serological diagnosis of tuberculosis. Int J Tuberc Lung Dis 3:736–740
    [Google Scholar]
  4. Andersen P., Askgaard D., Ljungqvist L., Bennedsen J., Heron I. 1991; Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 59:1905–1910
    [Google Scholar]
  5. Betts J. C., Smith M. A. 2001; Proteomics. Methods Microbiol 54:315–334
    [Google Scholar]
  6. Betts J. C., Dodson P., Quan S., Lewis A. P., Thomas P. J., Duncan K., McAdam R. A. 2000; Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 146:3205–3216
    [Google Scholar]
  7. Bifani P. J., Mathema B., Kurepina N. E., Kreiswirth B. N. 2002; Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:45–52 [CrossRef]
    [Google Scholar]
  8. Bjellqvist B., Pasquali C., Ravier F., Sanchez J. C., Hochstrasser D. 1993; A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365 [CrossRef]
    [Google Scholar]
  9. Bothamley G. H., Beck J. S., Schreuder G. M., D'Amaro J., de Vries R. R., Kardjito T., Ivanyi J. 1989; Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. J Infect Dis 159:549–555 [CrossRef]
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  11. Cole S. T. R., Brosch J., Parkhill T. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  12. Engers H. D., Houba V., Bennedsen J. 19 other authors 1986; Results of a World Health Organization-sponsored workshop to characterize antigens recognized by Mycobacterium-specific monoclonal antibodies. Infect Immun 51:718–720
    [Google Scholar]
  13. Falero-Diaz G., Challacombe S., Banerjee D., Douce G., Boyd A., Ivanyi J. 2000; Intranasal vaccination of mice against infection with Mycobacterium tuberculosis. Vaccine 18:3223–3229 [CrossRef]
    [Google Scholar]
  14. Glynn J. R., Whiteley J., Bifani P. J., Kremer K., van Soolingen D. 2002; Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849 [CrossRef]
    [Google Scholar]
  15. Harboe M., Wiker H. G. 1992; The 38-kDa protein of Mycobacterium tuberculosis: a review. J Infect Dis 166:874–884 [CrossRef]
    [Google Scholar]
  16. He X. Y., Zhuang Y. H., Zhang X. G., Li G. L. 2003; Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. Microbes Infect 5:851–856 [CrossRef]
    [Google Scholar]
  17. Heifets L. B., Good R. C. 1994; Current laboratory methods for the diagnosis of tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control pp 85–110 Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Herbert B. R., Molloy M. P., Gooley A. A., Walsh B. J., Bryson W. G., Williams K. L. 1998; Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19:845–851 [CrossRef]
    [Google Scholar]
  19. Hunter S. W., Gaylord H., Brennan P. J. 1986; Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 261:12345–12351
    [Google Scholar]
  20. Jackett P. S., Bothamley G. H., Batra H. V., Mistry A., Young D. B., Ivanyi J. 1988; Specificity of antibodies to immunodominant mycobacterial antigens in pulmonary tuberculosis. J Clin Microbiol 26:2313–2318
    [Google Scholar]
  21. Jungblut P. R., Schaible U. E., Mollenkopf H. J. 7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  22. Khanolkar-Young S., Kolk A. H. J., Andersen A. B. 11 other authors 1992; Results of the third immunology of leprosy/immunology of tuberculosis antimycobacterial monoclonal antibody workshop. Infect Immun 60:3925–3927
    [Google Scholar]
  23. Lopez B., Aguilar D., Orozco H. 8 other authors 2003; A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133:30–37 [CrossRef]
    [Google Scholar]
  24. Lyashchenko K., Colangeli R., Houde M., Al Jahdali H., Menzies D., Gennaro M. L. 1998; Heterogeneous antibody responses in tuberculosis. Infect Immun 66:3936–3940
    [Google Scholar]
  25. Manca C., Tsenova L., Bergtold A., Freeman S., Haslett P. A., Musser J. M., Freedman V. H., Kaplan G, Barry C. E. III 1999; Mycobacterium tuberculosis CDC1551 induces a more vigorous host responsein vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162:6740–6746
    [Google Scholar]
  26. Mattow J., Jungblut P. R., Schaible U. E., Mollenkopf H. J., Lamer S., Zimny-Arndt U., Hagens K., Muller E. C., Kaufmann S. H. 2001; Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 22:2936–2946 [CrossRef]
    [Google Scholar]
  27. Mattow J., Schaible U. E., Schmidt F. 7 other authors 2003; Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24:3405–3420 [CrossRef]
    [Google Scholar]
  28. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. 2001; Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471
    [Google Scholar]
  29. Pheiffer C., Betts J., Lukey P., van Helden P. 2002; Protein expression in Mycobacterium tuberculosis differs with growth stage and strain type. Clin Chem Lab Med 40:869–875
    [Google Scholar]
  30. Pottumarthy S., Wells V. C., Morris A. J. 2000; A comparison of seven tests for serological diagnosis of tuberculosis. J Clin Microbiol 38:2227–2231
    [Google Scholar]
  31. Rosenkrands I., Weldingh K., Jacobsen S., Hansen C. V., Florio W., Gianetri I., Andersen P. 2000a; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21:935–948 [CrossRef]
    [Google Scholar]
  32. Rosenkrands I., King A., Weldingh K., Moniatte M., Moertz E., Andersen P. 2000b; Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21:3740–3756 [CrossRef]
    [Google Scholar]
  33. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A 98:7534–7539 [CrossRef]
    [Google Scholar]
  34. Sonnenberg M. G., Belisle J. T. 1997; Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun 65:4515–4524
    [Google Scholar]
  35. Sorensen A. L., Nagai S., Houen G., Andersen P., Andersen A. B. 1995; Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63:1710–1717
    [Google Scholar]
  36. Stewart G. R., Snewin V. A., Walzl G. & 7 other authors; 2001; Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med 7:732–737 [CrossRef]
    [Google Scholar]
  37. van Crevel R., Nelwan R. H., de Lenne W., Veeraragu Y., van der Zanden A. G., Amin Z., van der Meer J. W., van Soolingen D. 2001; Mycobacterium tuberculosis Beijing genotype strains associated with febrile response to treatment. Emerg Infect Dis 7:880–883 [CrossRef]
    [Google Scholar]
  38. van Soolingen D., Qian L., de Haas P. E. & 7 other authors; 1995; Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238
    [Google Scholar]
  39. Wallis R. S., Perkins M., Phillips M. & 11 other authors; 1998; Induction of the antigen 85 complex of Mycobacterium tuberculosis in sputum: a determinant of outcome in pulmonary tuberculosis treatment. J Infect Dis 178:1115–1121 [CrossRef]
    [Google Scholar]
  40. Warren R. M., Sampson S. L., Richardson M., Van Der Spuy G. D., Lombard C. J., Victor T. C., van Helden P. D. 2000; Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37:1405–1416 [CrossRef]
    [Google Scholar]
  41. Warren R. M., Victor T. C., Streicher E. M., Richardson M., Beyers N., van Pittius N. C., van Helden P. D. 2004; Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med 169:610–614 [CrossRef]
    [Google Scholar]
  42. Wilkins E. G., Ivanyi J. 1990; Potential value of serology for diagnosis of extrapulmonary tuberculosis. Lancet 336:641–644 [CrossRef]
    [Google Scholar]
  43. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E., III. 1998; The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A 95:9578–9583 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27518-0
Loading
/content/journal/micro/10.1099/mic.0.27518-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed